
AD-A216 644

LOG(F): AN OPTIMAL COMBINATION OF LOGIC PROGRAMMING, REWRITING,

AND LAZY EVALUATION

DTIC
SELECTE

Sanjai Narain

JAN 9 19 9 0

April 1988

S..S '5.;T A
A p,ov, for publc roeecs.

D i r i u~ Ul.iamted

P-7437

90 01 16 026

The RAND Corporation

Papers are issued by The RAND Corporation as a service to its profes-
sional staff. Their purpose is to facilitate the exchange of ideas among
those who share the author's research interests; Papers are not reports
prepared in fulfillment of RAND's contracts or grants. Views expressed
in a Paper are the author's own and are not necessarily shared by RAND
or its research sponsors.

The RAND Corporation, 1700 Main Street, P.O. Box 2138. Santa Monica. CA 90406-2138

i

LOG(F): An Optimal Combination of Logic Programming,
Rewriting, and Lazy Evaluation

Sanjai Narain
Rand Corporation
1700 Main Street

Santa Monica, CA 90406

ABSTRACT

-A new approach for combining logic programming, rewriting, and lazy evaluation is
described. It rests upon subsuming within logic programming, instead of upon extending
it with, rewriting, and lazy evaluation.

A non-terminating, non-deterministic rewrite rule system, F* and a reduction strategy for
it, select, are defined. F* is shown to be reduction-complete in that select simplifies terms
whenever possible. A class of F* programs called Deterministic F* is defined and shown
to satisfy confluence, directedness, and minimality. Confluence ensures that every term
can be simplified in at most one way. Directedness eliminates searching in simplification
of terms. Minimality ensures that select simplifies terms in a minimum number of steps.
Completeness and minimality enable select to exhibit, respectively, weak and strong
forms of laziness.

F* can be compiled into Horn clauses in such a way that when SLD-resolution interprets
these, it directly simulates the behavior of select. Thus, SLD-resolution is made to
exhibit laziness. LOG(F) is defined to be a logic programming system augmented with
an F* compiler, and the equality axiom X=X. LOG(F) can be used to do lazy functional
programming in logic, implement useful cases of the rule of substitution of equals for
equals, and obtain a new proof of confluence for combinatory logic. /I R))"L

Accesion For

j DAc e a _:
NTtS

CR&#
r' TABrUnannow'nced Q

4diVJuiiS?!CdtioTl

Distribution

Availability Codes

AVd1I XldlotDist Si ec~Jl

'p.,

Table of Contents

1. Introduction .. I1-1
I.1I The problem I1-1
1.2 Summary of main results... 1-2

1.2.1 A rewrite rule system F*... 1-2
1.2.2 Deterministic F*.. 1-3
1.2.3 Compiling F* into Horn clauses.. 1-4
1.2.4 LOG(F) ... 1-5
1.2.5 Applications of LOG(F) ... 1-6

1.3 Relationship with previous work .. 1-7
1.4 Outline of paper ... 1-10

11. A rewrite rule system F* ... 1]-1

11. 1 Introduction..11-i1
11.2 Definition of F* ... fl1-1
11.3 Reduction-completeness of F*... 11-7

Ill. Deterministic F*... IlM-1
111. 1 Introduction.. I1ll-1
1111.2 Definition of DF* 11-1

111.3 Confluence and directedness of DF*...................................... mI-3

IV. Labeled deterministic F*... TV-i
IV. I Introduction.. IV-1
P1.2 Definition of LDF* IV-2

P1.3 Minimality of LDF* TV-5
[V.3.1 Existence of successful leftmost NA-derivations P1-6
P1.3.2 E-sets of N-reductions ... IV-8
P1.3.3 Reductions of proper terms ... IV-8

IVA4 Extension of minimality result to normal forms PV1i
IV.5 Derived minimality of DF*... .. P1-il1

V. Compilation of F* into Horn clauses V-1
V.1I Introduction V-1
V.2 Compilation algorithm.. V-i
V.3 Computing and printing normal forms ... V-3
V.4 Optimizing rules satisfying restriction (g) V-3

iv

V.5 Computing functions eagerly in F* V-4
V.6 Compiling LDF* programs... V-6
V.7 Correctness of F* compilation algorithm .. V-7

VI. Programming in LOG(F)... VI-1I
VI. 1 Introduction.. VI- 1
VI.2 Non-determinism in F*... VI-1
VI.3 Implementing substitution of equals for equals VI-3
VIA4 Combinatory logic.. VI-4
VI.5 Two way communication.. VI-5
VI.6 Hamming's problem.. VI-6
VI.7 Infinite graphical structures.. VI-7
VI.8 First two elements of a list.. .. VI-1 1
VI.9 Comparing LOG(F) performance with that of Prolog VI- 12

VII. Summary and conclusions... ... VII-1I

VIII. Acknowledgements.. .VIII- I

IX. References.. DCX-I

I. INTRODUCTION

1.1 THE PROBLEM

Logic programming [Kowalski 1979], is the use of statements of logic as computer
programs. It has led to new insights into computing as well as logic. Rewriting is
synonymous with reduction, as described, for example, in [Knuth & Bendix 1970]. It is
simplification of an expression by successive application of some collection of rewrite
rules. Its usefulness is evident from its appearance in many branches of mathematics.
Lazy evaluation, e.g. [Vuillemin 1974], is a method of computing which ensures that a
computation step is performed only when there is need to perform it. Thus, not only does
it enable certain computations to terminate more quickly, it also enables computation with
infinite data structures.

A system in which logic programming, rewriting, and lazy evaluation were combined
could put considerable programming power at our disposal. In particular, it would
simultaneously afford the expressive power of both functions, and relations.

Furthermore, such a system could be used to implement instances of the rule of
substitution of equals for equals in logical statements. This is a very important rule, as
witness its use in the simplest of mathematical derivations, e.g. solution of trigonometric
identities. Logical statements could be expressed using logic programs, while equality
theories could be expressed using rewrite rules.

We propose a new approach for building the above system which is rigorous, as well as
computationally efficient. It rests upon subsuming within logic programming, instead of
extending it with, rewriting and lazy evaluation. This means that SLD-resolution, the
proof procedure used for logic programming, is not changed. Instead, Horn clauses, or
pure Prolog clauses are written in such a way, that when SLD-resolution interprets them,
it directly simulates lazy rewriting. The resulting system is called LOG(F). It can be said
to make contributions to the following three areas:

1. Rewriting. Simple, syntactic conditions are defined under which non-
terminating, non-deterministic rewrite rules, with pattern matching, satisfy useful
computational properties. These are regarding demand-driven reduction,
confluence, elimination of search during reduction, and lengths of reductions.

2. Combination of logic programming and rewriting. It is shown how
rewriting can be subsumed within logic programming. In particular, the above
computational properties of rewriting are realized within logic programming,
without changing it, and without sacrificing logical rigor. This has two important

1-2 Introduction

consequences.

First, a satisfactory combination of logic programming, and rewriting is achieved,
without developing a new computational model of which the two are instances.
Developing such a model is quite difficult, particularly if it is to have satisfactory
declarative, and satisfactory procedural semantics. Second, full advantage is
taken of the very efficient implementations of Prologs. Thus, formidable
problems that implementation of the new model would very likely pose, are
avoided.

3. Lazy evaluation. By 1 and 2, it is shown how lazy evaluation can be done
efficiently, within the normally eager framework of logic programming. Thus a
basis is established for understanding lazy evaluation purely in terms of well
understood ideas in first order logic. Also, a new, and powerful use is found for
an old, and widely used tool, namely, Prolog.

1.2 SUMMARY OF MAIN RESULTS

1.2.1 A rewrite rule system F*

A first-order rewrite rule system F*, with pattern matching, is defined. The function
symbols are partitioned in advance into constructors, and non-constructors.
Simplification in F* means reducing ground terms to simplified forms i.e. terms of the
form c(tl,..,tn) where c is a constructor symbol, and each of tl,..,tn is a ground term.
Simplified forms can be used to represent finite approximations to infinite structures, and
are analogous to head-normal forms in the lambda-calculus [Wadsworth 1976]. In
contrast, a normal form is defined to be a term in which all function symbols are
constructors.

Now, an important point is that a method for computing simplified forms can be used
repeatedly to compute normal forms. Moreover, it would terminate more often than
would a method which directly computes normal forms. Hence it is sufficient to develop,
and study properties of, a method for computing simplified forms.

An F* program is a finite set of rules, each of the form LHS=>RHS, satisfying the
following restrictions: (1) LHS is of the form f(L1,..,Lm), m>--O, f a non-constructor
function symbol, and each Li either a variable, or of the form c(T ,..,Tn), n>=O, c a
constructor symbol, and each Ti a variable, (2) a variable occurs at most once in LHS,
and (3) all variables of RHS occur in LHS. Note that non-terminating, non-deterministic
sets of rewrite rules are permissible. Also any rule with left hand side of depth greater
than two can easily be expressed in terms of rules with left hand sides of depth at most

1-3 Introduction

two, as required by (1).

Where P is an F* program, and f(T1,..,Tn) a ground term, a reduction strategy for P,
selectp, is defined by the following pseudo-Horn clauses:

selectp(f(T1,..,Tn),f(T1 ...Tn)) if f(T1 .. Tn)=>pX.
selectp(f(T1 ...Ti,...Tn),X) if

there is a rule f(LI,..,Li,..,Ln)=>RHS in P, and
there is no substitution a such that Ti=Lia, and
selectp(Ti,X).

Here A=>B means there is a rule LHS=>RHS such that A matches LHS with substitution
a, and B is RHSc. Select is shown to be reduction-complete, in that if a term can be
simplified, it can be simplified by reducing it via select. Thus select exhibits a weak form
of laziness. An example of an F* program is:

perm([])=>[].
perm([AIV])=>insert(U,perm(V)).
insert(U,X)=>[UIX].
insert(U,[AIB])=>[Alinsert(U,B)].

Here [], I are constructors, while perm, insert are non-constructors. The term
perm([1,2,3]) is now reduced by select to [1lperm([2,3])], [21insert(1,perm([3]))], and
[31insert(1,insert(2,perm([])))]. If further reduction is desired, select may be called
recursively upon the arguments of I to yield each of [1,2,3], [1,3,2], [2,3,11, [2,1,3],
[3,1,2], [3,2,1].

1.2.2 Deterministic F*

An F* program P is a DF* program if (1) left hand sides of no two rules in P unify, and
(2) where f(Ll,..,Li,..,Lm)=>RHS is a rule in P, and Li is not a variable, then in every
other rule f(K1,..,Ki,..,Km)=>RHS1 in P, Ki is not a variable. These restrictions are very
reasonable, and as examples throughout this paper show, it is possible to adhere to these,
yet write quite expressive programs.

DF* is shown to satisfy confluence, directedness, and minimality. Confluence ensures
that a term can be simplified in at most one way. Directedness ensures that to simplify a
term it is sufficient to compute any reduction computable by select. Moreover, all
reductions computable by select are of equal length. Thus, during reduction, no

searching is necessary. Provided, whenever a term is reduced, all copies of it are
simultaneously reduced, minimality ensures that select simplifies terms in a minimum

1-4 Introduction

number of steps. Thus, select exhibits a strong form of laziness. An example of a DF*
program is:

append([],X)=>X.
append([UIV],W)=>[Ulappend(V,V)].
interleave([UIV],X)=>[Ulinterleave(X,X')].
a=>[1 Ia].
b=>[21b].

However, the F* program above to insert an element non-deterministically into a list is
not in DF*.

1.2.3 Compiling F* into Horn clauses

F* programs can be compiled into Horn clauses in such a way that when SLD-resolution
interprets these, it directly simulates the behavior of (the interpreter based upon) select.
This means that there is, essentially, a one-to-one correspondence between steps executed

by (the interpreter based upon) select, and steps executed by SLD-resolution. This is
accomplished by translating each F* rule into a distinct Horn clause, and simultaneously
embodying in that clause, information about the logic of the rule, as well as information
about the control of select when interpreting that rule.

Thus, SLD-resolution is made to exhibit laziness. If the F* program is also in DF*,

clauses can be further transformed to eliminate all backtracking. Finally, clauses can be
compiled into machine code by Prolog compilers. The compilation algorithm consists of
two steps:

Step 1. For each n-ary, n>--O, constructor symbol c in P, and where X 1,..,Xn are distinct
variables, generate the clause:

reduce(c(X1,..,Xn),c(Xl,..,Xn))

Step 2. Let f(L1,..,Lm)=>RHS be a rule in P. Let A1 ,..,Am,Out be distinct Prolog
variables not occurring in the rule. If Li is a variable let Qi be Ai=Li. If Li is c(X1,..,Xn)

where c is a constructor symbol, and each Xi a variable, let Qi be reduce(Ai,c(Xl,..,Xn)).
Generate the clause:

reduce(f(A 1,..,Am),Out):-Q 1,.. ,Qm,reduce(RHS,Out).

In practice, if Li is a variable, Qi can be dropped, provided Ai is replaced by Li in
f(A1,..,Am). For example, the above F*, and DF* programs are compiled into:

1-5 Introuction

reduce([l][).
reduce([UIV] ,[UIV]).

reduce(perm(X),Z):-reduce(X,[D,reduce(I],Z).
r-educe(perm(X),Z):-reduce(X,[FXIRX]),reduce(insert(FX,perm(RX)),Z).
reduce(insert(A,X),Z):-reduce([AIX],Z).
reduce(insert(A,X),Z):-reduce(X,[FXIRX]),reduce([FXlinsert(A,RX)] ,Z).
reduce(append(X,Y),Z):-reduce(X,[]),reduce(Y,Z).
reduce(append(X,Y),Z):-reduce(X,IUIV]),reduce([Ulappend(V,Y)],Z).
reduce(interleave(X,Y),Z):-reduce(X,[UIV]),reduce([Ulinterleave(Y,V)1 ,Z).

reduce(a,Z): -reduce([I1Ia],Z).
reduce(b,Z):-reduce([21b] ,Z).

If we now type, in Prolog, reduce(perm([l1,2,3]),Z), we obtain Z--[lIlperm([2,3])],
Z=[(2linsert(1,perm([3j)]1, and Z--[3linsert(lI,insert(2,perm([])))]. Note the following:

First, perm([1,2,31) is only partially reduced, and directly by Prolog, not by some lazy
interpreter implemented in Prolog. Second, the terms to which Z is bound are exactly

those to which permn([1,2,3]) is reduced by select. This illustrates Prolog simulating
behavior of select. If we now define:

first(OX,[]).
first(N,X,[FXIZ]) :-not(N=-O),reduce(X,[FXIRX]),N 1 is N-i ,first(N1 ,RX,Z).
makejist(E[]):-reduce(Ejfl).
makejist(E,IFEIZI):-reduce(E,[FEIRE]),makejlist(RE,Z).
printjist(X):-reduce(X,[FXIRX]),write(FX),write(' ,'),printlist(RX).

and then type, make-ist(perm([1,2,3]),Z), we obtain Z=[1,2,3], Z--[1,3,21, Z--[2,1,3],
Z=-[2,3, 1], Z -[3,1,21, Z--[3,2,1]. As further examples, if we type the queries on the left-
hand side, we obtain the answers on the right-hand side:

reduce(append(a,b),Z) --- > Z=[1 Iappend(a,b)]
reduce(interleave(a,b),Z) --- > Z-=[I interleave(b,a))
first(5,interleave(a,b),Z) --- > Z--[1,2,1,2,11
printiist(interleave(a,b)) --- > 1,2,1,2,1,2..

1.2.4 LOG(F)

LOG(F) is defined to be a logic programming system augmented with an F* compiler,
and the equality axiom X=X. The result of compilation is to add to a logic progrmmi-ng
system, a primitive for lazily simplifying F* terms. This primitive can be called from
other Horn clauses, so LOG(F) is proposed as a combination of logic programming,

1-6 Introduction

rewriting and lazy evaluation.

For problems for which lazy evaluation does not reduce lengths of computation, e.g.
sorting, or all permutations, LOG(F) is empirically found to be about five times slower
than Prolog. For problems for which lazy evaluation does reduce lengths of computation,
e.g. N-queens, LOG(F) is faster than Prolog by unbounded, even infinite, amounts.

In the literature, [Vuillemin 1974, Berry & Levy 19791, optimality is used synonymously
with minimality. Due to minimality of DF*, LOG(F) can also be said to be optimal. It

can also be said to be so in a weaker sense, because of its desirable computational
properties, and their economical realization in Prolog.

1.2.5 Applications of LOG(F)

LOG(F) can be used to do lazy functional programming in logic. In particular, it can be

used to manipulate representations of infinite structures, such as in real analysis, exact
real arithmetic, graphics, or networks of communicating processes.

The SKI rules of combinatory logic can be expressed as a DF* program. From
confluence of DF*, a new proof is obtained of the confluence of combinatory logic.

DF* seems to offer a reasonable compromise between sequential execution and
unbounded parallelism. Due to directedness of DF*, arguments of f in f(tl,..,tm) can be
simplified in parallel, however, they would be simplified lazily. Thus, DF* seems to be a
good candidate for implementation on parallel machines.

Finally, if a DF* program is interpreted as an equality theory, reduce clauses can be

thought of as implementing an equality theory in Prolog with the restriction that it be used
only for simplification of terms. Now, given a clause of the form p(c(X1,..,Xm)):-Body,
where c is a constructor symbol, we can add another clause stating a rule of substitution

of equals:

p(X):-reduce(X,c(X1,..,Xm)),p(c(X1,..,Xm)).

Now, even when a term E is not of the form c(X1,..,Xm), p can still be inferred for E,
provided E is reducible to a term of the form c(X1,..,Xm). For example, with the Prolog
rule for computing perimeters of regular polygons, peri(regpoly(N,S),Z):-Z is N*S, we
can infer peri(reg-poly(3,10),30). We can now add the clause:

peri(X,Y):-reduce(X,Z),peri(Z,Y).

1-7 Introduction

Where reg-poly is a constructor, and equi, square, and hexagon are non-constructors, an
equality theory among polygons, expressed in F*, is:

equi(S)=>regpoly(3,S).
square(S)=>regpoly(4,S).
hexagon(S)=>regpoly(6,S).

This is compiled into:

reduce(reg-poly(A,B),reg-poly(A,B)).
reduce(equi(S),Z):-reduce(reg-poly(3,S),Z).
reduce(square(S),Z):-reduce(reg-poly(4,S),Z).
reduce(hexagon(S),Z):-reduce(reg-poly(6,S),Z).

The Prolog query peri(equi(1O),30), now succeeds. Thus Prolog automatically infers the
result of substituting equi(10) for reg-poly(3,10), in peri(regpoly(3,10),30). Of course,
if we type peri(square(3),Z), we obtain Z=12.

1.3 RELATIONSHIP WITH PREVIOUS WORK

There seem to be two major approaches to combining logic programming, and rewriting.

The first consists of implementing logic programming in rewriting, e.g. LOGLISP

[Robinson & Sibert 1982], or QLOG [Komorowski 1982]. However, it seems difficult

for such an approach to lead to an efficient system since logic programs must pass

through two high-level layers of interpretation.

The second approach consists of developing a new computational model of which both

rewriting, and logic programming are instances. Examples of such models include those

based upon upon semantic- or T-unification, [Goguen & Meseguer 19861,

[Subrahmanyam & You 1984], [Komfeld 1983], sets, [Robinson 1987], [Darlington et al.

1986], narrowing, [Reddy 1985], the Knuth-Bendix completion procedure, [Dershowitz

& Josephson 1984], oriented equational clauses, [Fribourg 1984], residuation, [Ait-Kaci

& Nasr 1987], extension of SLD-resolution with narrowing, [Yamamoto 1987], or

extension of SLD-resolution with atom-elimination rule, [Barbuti et al. 1986].

In order for a new computational model to be satisfactory, it must posssess not only good

declarative semantics, but also good procedural semantics. The former is essential for

reasoning about programs in the model. The latter means that the behavior of the model

is simple enough that it can be visualized, predicted, and controlled. It is essential if the

model is to be used for programming, i.e. for expressing algorithms. In this regard, we

also quote Robinson [1984]:

1-8 Introduction

...one guiding principle must surely be that logic programming, however narrowly or broadly

construed, essentially involves the ingredient of practicality. The underlying deductive processes
should have enough directness and predictability to permit the planning of efficient logical
computations. Herein probably lies the important distinction, difficult to make precise but
nonetheless real, between logic programming proper and automatic deduction in general.

However, developing a satisfactory computational model, more general than logic
programming and rewriting, is a very ambitious undertaking, particularly if the model is
also to exhibit laziness. In particular, it appears that each of the above models, with the
possible exception of [Robinson 1987], and [Darlington et al. 1986], either has complex
declarative semantics, or complex procedural semantics.

Of course, even if a satisfactory computational model is developed, its efficient
implementation on concrete machines can still pose a considerable software engineering
challenge, requiring several person-years of effort. In particular, it appears that efficient
implementation of the above proposals is still an ongoing effort.

Lazy evaluation itself does not seem to be easy to implement efficiently. Several
implementations of lazy evaluation for functional, and logic-based languages have been
proposed e.g. [Friedman & Wise 1976, Henderson 1980, Turner 1979, O'Donnell 1985,
Clark & McCabe 1979, Hansson et al. 1982, Shapiro 1983, Barbuti et al. 19861.
However, only a few of these systems, e.g. Turner's, or O'Donnell's, seem to be efficient
enough for practical programming.

In view of such difficulties with developing, and implementing a new computational
model of which logic piogramming, rewriting, and lazy evaluation, are instances, we ask
whether it is possible to subsume the last two within the first. In other words, we ask
whether it is possible to keep SLD-resolution fixed, but use it in such a way that it
performs, in a computationallyfeasible manner, rewriting, and lazy evaluation? If such
an attempt were to succeed, we would not only obtain a declarative semantics of
rewriting, and lazy evaluation using purely logical ideas, we would also have a very
efficient implementation of these, in, say, Prolog.

Important precedents in this direction have already been established with the
subsumption, within logic programming, of grammars, and relational databases. Definite
clause grammar rules [Pereira & Warren 1980] can be expressed as Horn clauses in such
a way that their interpretation using Prolog, directly simulates top-down parsing.
Relational databases can be expressed directly as ground Horn clauses [Gallaire &
Minker 1978]. Prolog enables inference with them in ways (e.g. using recursion) not
possible with conventional data rerneval operators.

1-9 Introduction

An important step towards subsuming rewriting within logic programming, has recently
been taken by van Emden & Yukawa [1987], whose motivations are very similar to, but
independent, of ours. They show how to derive logical consequences of the standard

equality axioms which result in a small SLD-search space. They also show how to
compile an equality theory into equality free Horn clauses, which also result in a small
SLD-search space. However, their approach is restricted only to terminating equality
theories. These are insufficient for representing infinite structures.

As pointed out in [Narain 1986], the compactness theorem of first order logic [Robinson

1979] suggests that lazy evaluation is already present in first order logic. It states that if
an infinite set of clauses is unsatisfiable then it has a finite subset which is also
unsatisfiable. Moreover, a complete proof procedure, such as SLD-resolution for Horn
clauses would find this set in finite time. Thus, as with lazy evaluation, one could get
termination in finite time even with an infinite input.

This idea was investigated further, and led to a method in [Narain 1986], for defining
functions by Horn clauses in such a way that when SLD-resolution interprets these, it
behaves lazily. However, the discussion is limited mainly to lists, although a
generalization to other data structures is hinted.

The current system, LOG(F), is an attempt to generalize, and develop a purely syntactic

explanation of the above method. It appears to subsume within logic programming, in a
rigorous yet computationally efficient fashion, non-terminating, non-deterministic

rewriting, and lazy evaluation.

Minimality of DF* appears to be a generalization of similar results by Vuillemin [1974],
and Berry & Levy [19791. Both derive it only for rewrite rules whose left hand sides are
of the form f(Xl,..,Xm), where each Xi is a variable. Thus, they must assume existence
of a finite number of primitive functions such as if-then-else, which are not definable
using such rules alone. In contrast, F* admits rewrite rules in which the Xi can be
patterns. Thus, in F*, as in logic programming, it is not necessary to assume existence of
any primitive functions.

Restrictions on rewrite rules in F*, and the reduction strategy select, seem to be
substantially simpler than their counterparts in the system of O'Donnell [1985]. Select
also seems to be substantially simpler than its counterpart in the system of Huet & Levy
[1979]. Furthermore, since F* can be compiled into efficient Horn clauses, and Prolog
can be used, implementation of F* is straightforward. However, implementation of the

other two systems seems to be quite a major undertaking.

Confluence of DF* is anticipated by Huet [1980] who derives sufficient conditions for

1-10 Introduction

confluence for rewrite rule systems more general than DF*. However, our proof, being
specialized for DF*, is very simple.

LOG(F) bears only a superficial similarity to the system of Tamaki [1984]. He also
shows how to compile equality theories into Horn clauses with a smaller search space.
However, as is pointed out in his paper, these clauses can still be seriously inefficient,
particularly, when manipulating representations of infinite structures. As shown in
Section V1.8, such inefficiency is not exhibited by LOG(F). Also, his reducibility
predicate can terminate even without simplifying terms whereas that of LOG(F) cannot.

1.4 OUTLINE OF PAPER

Section II defines F*, and the reduction strategy select, and establishes its reduction-
completeness. Section III defines DF*, and shows its confluence and directedness.
Section IV defines Labeled DF*, a subset of DF*, for the purpose of formalizing the
notion of a copy of a term, and then establishes its minimality. Section V describes an
algorithm for compiling F* into Horn clauses, and proves its correctness. Section VI
describes examples of programming in LOG(F), and compares performance of LOG(F)
with that of Prolog. Section VII contains a summary and conclusions. Proofs of
relatively minor propositions have been omitted, or abbreviated. These can be obtained
in full in [Narain 1988].

H. A REWRITE RULE SYSTEM F*

H.1 INTRODUCTION

A first order, non-deterministic, non-terminating rewrite rule system F*, and a lazy
reduction strategy for it, select, are defined. The emphasis in F* is on computing
simplified forms, instead of normal forms. Thus, termination problems faced by certain
previous approaches are avoided.

The main result proved is that F* is reduction-complete, in that select reduces ground
terms to their simplified, or normal forms, whenever possible. Reduction-completeness
yields a weak form of laziness. A term may denote an infinite object, and so fail to have
a finite normal form. However, if it has a finite simplified form, it is obtained in finite
time. By repeatedly simplifying subterms of this simplified form, the structure of the
infinite object can be revealed to any arbitrary depth.

11.2 DEFINITION OF F*

Variables. There is a countably infinite list of variables.

Function symbols. There is a countably infinite list of 0-ary function symbols. In
particular, [], 0, true, false, are 0-ary function symbols. There is a countably infinite list of
1 -ary function symbols. In particular, s is a 1 -ary function symbol. There is a countably
infinite list of 2-ary function symbols. In particular, I is a 2-ary function symbol. And so

on, for all other arities.

Connectives. The connectives are =>, (,), ',',.

Constructor Symbols. There is an infinite subset of the function symbols called
Constructors. Each element of Constructors is called a constructor symbol. For each n,
n>=O, Constructors contains an infinite number of n-ary function symbols. In particular,

0, true, false, [I and I are constructor symbols. It is intended that data be represented by
combinations of only constructor symbols.

Terms. A term is either a variable, or an expression of the form f(tl,..tn) where f is an n-
ary function symbol, n>=0, and each ti is a term. A term is called ground if it contains no
variables. It is the intention in F* to reduce only ground terms, and most of the
propositions below are about these. Non-ground terms such as left hand sides of
reduction rules do arise, but in very few propositions. Hence, unless explicitly stated
otherwise, by a term is meant a ground term.

11-2 A rewrite rule system F*

Subterms. Let E be a term. Then E is said to be a subterm of itself. Also, if E=f(tl,..,tn),
n>O, then X is said to be a subterm of E, if X is a subterm of some ti. Let X be a subterm
of E. Then X is said to occur in E. Also, if X E, then X is said to be a proper subterm of
E, or be properly contained in E. Two subterms A and B of E are said to overlap, if A is
properly contained within B.

Substitutions. A substitution is a, possibly empty, set [<X l,tl >,..,<Xn,tn>) where the
Xl,..,Xn are distinct variables, and each ti is a term, possibly containing variables. A
variable X is defined in a substitution a iff for some possibly non-ground term s, <X,s>
occurs in a. In this paper, we will be concerned almost exclusively with substitutions in
which for each pair <X,s>, s is a ground term.

Applying substitutions to terms. Let a=(<Xl,tl>,..,<Xn,tn>) be a substitution and E be
a term, possibly containing variables. The result of applying a to E, Ea, is the result of
replacing, for each i, every occurrence of Xi in E by ti.

Matching. A ground term E is said to match a possibly non-ground term F, with
substitution a, if E=Fa.

Unification. Two terms, E and F, possibly containing variables, are said to unify with

substitution a if Ea=Fa. Note that matching is a special case of unification.

Reduction Rules. A reduction rule is of the form:

LHS=>RHS

where LHS and RHS are terms, possibly containing variables. LHS is called the head of

the rule. The following restrictions are placed on LHS and RHS:

(a) LHS is not a variable.

(b) LHS is not of the form c(tl,..,tn) where c is a constructor symbol.

(c) If LHS=f(tl,t2,..,tn), then each ti is a variable, or a term of the form
c(X 1,..,Xm) where c is an m-ary constructor symbol, and each Xi a variable.

(d) There is at most one occurrence of any variable in LHS.

(e) All variables of RHS appearin LHS.

These restrictions are very reasonable, and as examples throughout the paper show, very

HI-3 A rewrite rule system F*

expressive programs can be written adhering to these. Note that F* is more expressive
than first order Lisp, as the latter does not admit patterns in left hand sides offunction
definitions.

Restriction (a) is to enable functional programs to be written in F*.

Restriction (b) ensures that a term of the form c(tl,..,tn), c a constructor symbol, cannot
be reduced as a whole. This yields a simple halting condition for the basic simplification
process. If further simplification is required, the process may be called recursively.

Restriction (c) limits heads of rules to be of depth at most two, and so greatly simplifies
analysis. However, no generality is lost, since rules with heads of arbitrary depth can
easily be expressed in terms of rules with heads of depth at most two. For example, the
rule:

fib(s(s(X)))=>plus(fib(X),fib(s(X)))

can be expressed as:

fib(s(A))=>g(A)
g(s(X))=>plus(fib(X),fib(s(X)).

Restriction (d) is the linearity assumption. It ensures that to match a ground term
f(tl,..,tn) with the left hand side of a rule f(Ll,..,Ln), it is sufficient to match, for each i, ti
with Li.

Restriction (e) ensures that a ground term is never reduced to a non-ground term. Again,
this is necessary if F* is to be used for functional programming.

F* programs. An F* program is a finite set of reduction rules. Where t is a binary
constructor symbol, some examples of F* programs are:

quicksort([])=>[].
quicksort([AIB])=>quicksort 1 (A,partition(A,B,[],[])).
quicksort 1 (A,t(L,R))=>append(quicksort(L),[Alquicksort(R)]).

partition(U,[],L,R)=>t(L,R).
partition(U,[AIB],L,R)=>

if(lesseq(A,U),partition(U,B,[AIL],R),partition(U,B,L,[AIR])).

append([],X)=>X

11-4 A rewrite rule system F*

append([UIV] ,W)=>IiUlappend(V,W)]

if(trueX,Y)=>X.
if(falseXY)=>Y.

lesseq(OX)=>true.
lesseq(s(X),s(Y))=>lesseq(X,Y).
lesseq(s(X),O)=>false.

zero(X)=>O.
prim..jecjf(O,Y 1,Y2,Y3)=>g(Yl1,Y2,Y3).
prinj~ecj-(s(X),Y1 ,Y2,Y3)=>h(primjecj-(X,Y 1,Y2,Y3),X,Y 1,Y2,Y3).
minimnp(X,K)=>if(equal(p(X),K),X,minin~p(s(X),K)).

equal(O,O)=>true.
equal(O,s(X))=>false.
equal(s(X),O)=>false.
equal(s(X),s(Y))=>equal(X,Y).

merge([AIB] ,[CID])=>ifolesseq(A,C),[Almerge(B,[CD]),[Cmerge(IAIB] ,D)]).

mnt(N):=>[Nlint(s(N))I.

greater(X,Y)=>not(lesseq(X,Y)).

not~true)=>false.
not(false)-->true.

We now consider the reduction of terms. Again, unless explicitly stated, by a term we
mean a ground term.

E=>pE1. Let P be an F* program and E and El be terms. We say E=>pEl if there is a
rule LHS=>RIHS in P, and a substitution cy such that E=LHSo, and E1I=RHScy. We also
say that E reduces to ElI by the rule LHS=>RHS, or that the rule applies to the whole of
E. The subscript on => is dropped, if clear from context.

F=E[G/HJ. Where E,FGH, are terms, let F be the result of replacing an occurrence of G
in E by H. Then we say F=E[GIH].

E->pEI1,E-*>pEI. Let P be an F* program and E be a term. Let G be a subterm of E
such that G=>PH. Let El be the result of substituting H for G in E. Then we say that E-

II-5 A rewrite rule system F*

>pE1. Note that if E=>pE 1 then E matches the left hand side of some rule in P. If E-
> 1 then some subterm of E, including possibly E, matches the left hand side of some
rule in P. We define -*> to be the reflexive transitive closure of ->p. Again, the subscript

on -> or -*> is dropped, if clear from context.

Reductions. Let P be an F* program. A reduction in P is a, possibly infinite, sequence
El,E2.... such that for each i, when Ei and Ei+l both exist, Ei->pEi+l.

Lengths of reductions. The length of a finite reduction EO,E1,..,En is n.

Simplified forms. A term is said to be in simplified form or simplified if it is of the form
c(tl ,.. ,tn) where c is an n-ary constructor symbol, n>--O, and each ti is a term. F is called a
simplified form of E, if E-*>F and F is in simplified form.

Normal forms. A term is said to be in normal form if each function symbol in it is a
constructor symbol. F is called a normal form of E if E-*>F and F is in normal form.

Successful reductions. Let P be an F* program. A successful reduction in P is a finite
reduction EO,..,En, n>=O, in P, such that En is simplified.

Rp(G,H,A,B). Let P be an F* program. Where GH,A,B are terms, Rp(GH,A,B) if (a)

G=>H, and (b) B is identical with A except that zero or more occurrences of G in A are
simultaneously replaced by H. Note that A and G can be identical. Again, if P is clear
from context we omit the subscript on R.

Reduction strategy. Let P be an F* program. A reduction strategy for P takes as input a
term E and selects a subterm G of E such that there exists a term H such that G=>pH.

A special reduction strategy. Let P be an F* program. We now define a reduction
strategy, selectp for P. Informally, given a term E it will select that subterm of E whose
reduction is necessary in order that some => rule in P apply to the whole of E. Where
f(Tl ,..,Tn) is a term, the relation selectp is defined by the following pseudo-Horn clauses:

selectp(f(T1,..,Tn),f(T1 ...Tn)) if f(T1,..,Tn)=>pX.
selectp(f(Tl,..,Ti,..,Tn),X) if

there is a rule f(Ll,..,Li,..,Ln)=>RHS in P, and
there is no substitution a such that Ti=Lio, and
selectp(Ti,X).

The second rule is a schema, so that an instance of it is assumed written for each each i,
1 =<i=<n. Again, the subscript on select is dropped, if clear from context. Note the

II-6 A rewrite rule system F*

following:

(1) When selectp takes as input E and returns G, it also, implicitly, computes a
position, or occurrence of G in E. This occurrence can be obtained from the proof
of selectp(EG).

(2) If selectp(EG), there is a term H such that G=>pH.

(3) Select is non-deterministic, in that given term E, it is possible for it to select
more than one subterm A 1,..,Ak, k>O, within E. Also, it is possible that for some
i,j, i~j, Ai is a proper subterm of Aj.

(4) Since, by restriction (b) there is no rule in P of the form c(tl,..,tn)=>RHS,
where c is a constructor symbol, if E is simplified, selectp is undefined for E.

For example, where P is the set of reduction rules which appear above, and 1,2,... are
abbreviations, respectively, for s(O),s(s(O)),.., we have the following:

select(merge(int(1),int(2)),int(l)).
select(merge(int(1),int(2)),int(2)).
select(merge([1,3],int(2)),int(2)).
select(merge([1,2],[3,4]),merge([1,2],[3,4])).
If E=[1 merge(int(1),int(2))] then select is undefined for E.
select(lesseq(O,zero(I)),lesseq(O,zero(1))).

select(lesseq(O,zero(1)),zero(1)).

Let E,GH be terms. In the following, when we say that select(E,G), and G is to be
replaced by H in E, we mean that the occurrence of G derived from the proof of
select(E,G), is to be replaced by H.

N-step. Let P be an F* program and E,GH be terms. Let selectp(EG), and G=>pH. Let
El be the result of replacing G by H in E. Then we say that E reduces to El in an N-step
in P. The qualification "in P" is omitted when P is clear from context. The prefix N in N-
step is intended to connote normal order.

N-reduction. Let P be an F* program. An N-reduction in P is a reduction El,E2 in P

such that for each i, when Ei and Ei+ 1 both exist, Ei reduces to Ei+ 1 in an N-step in P. In
particular, the sequence E where E is a term, is an N-reduction in P. The qualification "in
P" is omitted when P is clear from the context.

select-r. This reduction strategy repeatedly uses select to reduce terms. The suffix r

11-7 A rewrite rule system F*

stands for recursive, or repeated. Where P is an F* program:

select-rp(EF) if selectp(E,F).
select rp(c(T1,..,Ti,..,Tm),F) if

c is a constructor symbol, and
select-rp(Ti,F).

Again, the second rule is a schema, so that an instance of it is assumed written for each i,
1 =<i=<n. Thus, select-r is like select except that if a term is in simplified form, it

recursively uses select on one of the arguments of the outermost constructor symbol. So,
its repeated use can yield normal-forms of terms.

For example, with the usual rules for append, the query select([I lappend([],[])],X) fails,
whereas the query select-r([1 append([],[])IX) succeeds with X=append([],[]). The

subscript on select-r is dropped, if clear from context.

NR-step. Let P be an F* program and E,G,H be terms. Suppose select-rp(EG) and

G=>pH. Let El be the result of replacing G by H in E. Then we say that E reduces to El
in an NR-step in P. The qualification "in P" is omitted when clear from context.

NR-reduction. Let P be an F* program. An NR-reduction in P is a reduction ElE2,....
in P such that for each i, when Ei and Ei+l both exist, Ei reduces to Ei+l in an NR-step
in P. In particular, the sequence E where E is a term, is an NR-reduction in P.

NR-reductions are needed to compute normal-forms of terms. For example, the term
append([1],[2]) has the only N-reduction append([1],[2]), [1lappend([],[2])]. However, it
has the NR-reduction append([1],[2]), [1lappend([],[2])], [1,2]. The qualification "in P" is

omitted when clear from context.

H.3 REDUCTION-COMPLETENESS OF F*

Lemma 1. Let P be an F* program. If A->B and B is simplified but A is not, then A=>B.

Proof. Clear, from restriction (b). QED.

Lemma 2. Let P be an F* program. Let Xl,..,Xn be variables, GH,tl,..,tn,tl*,..,tn* be

terms such that for each i, R(GH,ti,ti*). Let a=(<Xl,tl>,..,<Xn,tn>) and

't={<Xl,tl*>..,<Xn,tn*>) be substitutions. Let M be a term, possibly containing

variables, but only from (X 1,..,Xn). Then R(G,H,Ma,Mr).

Proof. By induction on length of M. QED.

11-8 A rewrite rule system F*

Lemma 3. Let P be an F* program. If:

(1) G, H, ElI f(tl1,..,tn) and FlI=f(tlI*,..,tn *) are terms, and
(2) R(G,H,ti,ti*) for every i in 1,..,n, and
(3) B=f(Ll,..,Ln) is the head of some rule in P, and
(4) E1=Ba for some substitution ay, which defines only the variables in B.

Then there exists a substitution Tr such that:

(1) FlI=Br, and
(2) ay and ~r define exactly the same variables, and
(3) If pair <X,s> occurs in a, and <X,s*> occurs in t, then R(G,H,s,s*).

Proof. Clear, by restrictions (a)-(e). QED.

Lemma 4. Let P be an F* program. If:

(1) f(tl,..,ti,..,tn) is a term, and
(2) f(Ll,..,Li-1,c(X1,..,Xm),Li+l,..,Ln)=>RHS is a rule in P, and
(3) ti=dl,d2,d3,..,dr, r>O, is an N-reduction.

N-reduction.

Proof. By definition of N-reduction. QED.

Theorem 1. Let P be an F* program. Let ElF,F2,G,H be terms such that

(1) R(G,H,El,Fl), and
(2) FlI reduces to F2 in an N-step

Then there is an N-reduction El,..,E2 in P such that R(G,H,E2,F2).

H1-9 A rewrite rule system F*

Proof. It is helpful to draw the following diagram:

N-step

F1------------- >F 2

IR(G,H-,E1,F1)

El------------ *>E 2
N-reduction

We have to show that R(G,H,E2,F2). We proceed by induction on length of ElI.
Suppose El is a O-ary function symbol. If El=Fl then El,F2 is an N-reduction and
R(G,H,F2,F2). If ElI FlI then since R(G,HE1 XF1), ElI=-G and El1=>Fl1. Thus, there is an
N-reduction El ,Fl ,F2 and R(G,HF2,F2). In both cases, take E2=F2.

Otherwise, El=f(tl,..,tn), n>O. Assume the theorem for every term whose length is less
than that of f(tl,..,tn). If El=FI then ElF2 is an N-reduction and R(GH,F2,F2).
Otherwise El Fl. If El=-G then since R(GH,El,Fl), El=>Fl. Thus, there is an N-
reduction El,Fl,F2, and R(GH,F2,F2). Again, in both cases, take E2=F2.

We now arrive at the interesting cases, with El Fl, but G EX. Hence Fl=f(tl*,..,tn*)
where for every i, R(G,H,ti,ti*). We now consider the following cases:

Case 1. Fl=>F2. Then there is a rule f(Ll,..,Ln)=>RHS in P, such that Fl matches
f(LI,..,Ln) with substitition r, and F2=RHSt.

Case 1-1. El matches f(Ll,..,Ln) with substitution aF. By Lemma 3, there exists
substitution P such that Fl=f(Ll,..,Ln)p. Since Fl=f(Ll,..,Ln)'T, -r=p.

ElI =>RHSa, so let E2=RH-Sca. The N-reduction is El ,E2. Of course F2=RHS-r.
By Lemma 3, a; and r define exactly the same variables, and if <X,s> occurs in a
and <X,s*> appears in t then R(G,H,s,s*). Hence, by Lemma 2, R(G,HE2,F2).

Case 1-2. ElI does not match f(Ll,..,Ln). Then, since ElI is ground and each
variable occurs at most once in f(Ll,..,Ln), there is some Li in Ll,..,Ln, and some
ti in tl,..,tn, such that ti does not match Li. Hence Li is not a variable, so
Li=c(Xl,..,Xm), c a constuctor symbol and each Xi a variable.

Moreover, since R(G,H,ti,ti*), and ti does not match Li, by restriction (c), ti is not
simplified. Since Fl matches f(LI,..,Ln), ti"' matches Li, and soti* is simplified.
Since R(G,H,ti,ti*), ti=>ti*. Thus select(El,ti). Hence ft,.t.,t)reduces to

11-10 A rewrite rule system F*

f(tl,..,ti*,..,tn) in an N-step.

Hence there exists an N-reduction EI=P1,P2,P3.... such that for each i,
Pi=f(sl,..,sn), and for each sk in sl,..,sn, sk=tk or sk=tk*. Moreover, Pi+l is
derived from Pi by selecting some sk in sl ,.. ,sn such that sk does not match Lk in
Ll,..,Ln, and replacing sk, in Pi, by tk*. We also have for each i, R(G,H,Pi,F1).
Since n is finite, this reduction cannot be infinite and must end in Pm such that Pm
matches f(Ll ,.. ,Ln) with substitution c. Then Pm=>RHSa. Hence we have the
N-reduction El,P2,P3,..,Pm,RHSa. Take E2=RHSo. By Lemma 3, F1 and
f(Ll,..,Ln) match with some substitution, and clearly this is t. Already,
F2=RHS't. By Lemma 2, R(G,HE2,F2).

Case 2. Not FI=>F2. We are given that F1 reduces to F2 by an N-step. We now have to
show that there is an N-reduction El,..,E2 such that R(GH,E2,F2).

Suppose select(Fl,u). Then u occurs in some ti*. That is, there is some ti* in tl*,..,tn*,
such that select(ti*,u). Let u=>v and let ti** be the result of replacing u in ti* by v.
Hence ti* reduces to ti** in an N-step, and also F2=f(tl*,..,ti**,..,tn*). By definition of
select, there is a rule f(Ll,..,Li,..,Ln)=>RHS in P such that ti* does not match Li. Hence
Li=c(Xl,..,Xm), m>=O, where c is a constructor symbol and each Xi is a variable.

Clearly, ti* is not simplified. So, by restriction (b) ti is also not simplified. ti* reduces to
ti** in an N-step. We already have R(G,H,ti,ti*). Since the length of ti is less than that
of f(tl,..,ti,..,tn), by induction hypothesis there is an N-reduction ti=dl,d2,..,dr, r>=l, such
that R(GH,dr,ti**). By Lemma 4, the sequence f(tl,..,ti-l,ti,ti+l,..,tn), f(tl,..,ti-
l,d2,ti+l,..,tn),.., f(tl,..,ti-l,dr,ti+l..,tn)is an N-reduction. Take E2=f(tl,..,ti-
l,dr,ti+l..,tn). We already have F2=f(tl*,..,ti**,..,tn*) and for each k, R(G,H,tk,tk*).
Hence R(GH,E2,F2). QED.

Lemma 5. Let P be an F* program. Let R(GH,E0,FO) and FO,Fl,..,Fn be an N-reduction.
Then there is an N-reduction EO,..,El,..,En such that R(G,H,EnFn).

Proof. By induction on length n of FO,F1,..,Fn. If n--O then clear. Otherwise assume
lemma for the N-reduction Fl ,..,Fn. Since FO reduces to F1 in an N-step and
R(G,H,E0,FO), by Theorem 1, there exists an N-reduction EO,..,E 1 such that
R(GH,E1 ,F1). By induction hypothesis, there exists an N-reduction El,..,En, such that
R(G,H,En,Fn). Hence there exists the N-reduction EO,..,E1,..,En such that R(G,H,En,Fn).
QED.

Theorem 2. Reduction-completeness of F* for simplified forms. Let P be an F*
program and DO a term. Let DO,DI,..,Dn, n>=O, be a successful reduction in P. Then

UI-11 A rewrite rule system F*

there is a successful N-reduction DO,E1,..,Em in P, such that Em-*>Dn.

Proof. By induction on length n of DOD 1,..,Dn. If n=O, DO is already simplified, so DO is
a successful N-reduction, and DO-*>DO.

Let n>O and assume Theorem for D 1,..,Dn. Then there is a successful N-reduction

D1,F2,..,Fp such that Fp-*>Dn. The situation can be laid out as follows:

Dn

D2

DI->F2-*>Fp

R(G,H,Em,Fp), Fp-*>Dn

DO->E1-*>Em

Since DO->DI, there are terms G,H, such that G=>H and Dl=DO[G/H]. Hence
R(G,H,D0,Dl). Since D1,F2,..,Fp is a successful N-reduction, by Lemma 5, there is an

N-reduction DO,E 1,..,Eq such that R(GH,EqFp). If Eq is simplified, take Em=Eq. Now
DO,El,..,Em is a successful N-reduction. Since R(GH,Em,Fp), and Fp-*>Dn, Em-*>Dn,

as required.

If Eq is not simplified, then since R(G,HEq,Fp), and Fp is simplified, Eq=>Fp. Now take

Em=Fp, so DO,El,..,Eq,Em is a successful N-reduction, and Em-*>Dn, as required.

QED.

Theorem 3. Let P be an F* program. Let E1,F1,F2,GH be terms such that

(1) R(G,H,E1,Fl), and
(2) Fl reduces to F2 in an NR-step

Then there is an NR-reduction El,..,E2 in P such that R(GH,E2,F2).

Proof. By induction on length of El. Let El be a 0-ary function symbol. If El=F1 then

clear. If ElFl, then El=G, and so, clear. Otherwise, let El=f(tl,..,tn), n>O. Assume

theorem for tl,..,tn.

Case 1. El is unsimplified. If F1 is simplified, then since R(G,H,EI,Fl), El--G, so the

11-12 A rewrite rule system F*

theorem is clear. If F1 is unsimplified, then by definition of NR-reduction, Fl reduces to
F2 in an N-step. By Theorem 1, there exists an N-reduction El ,..,E2 such that
R(G,H,E2,F2). But this is also an NR-reduction.

Case 2. El is simplified. Then, since R(G,H,E1,Fl), F1 is also simplified. Let
Fl=f(sl ,..,sn) where f is a constructor symbol. Hence for each i, l=<i=<n, R(GH,ti,si).
Since F1 reduces to F2 in an NR-step, there is some si in sl,..,sn, such that si reduces to
some si* in an NR-step and F2=f(sl,..,si*,..,sn). By induction hypothesis, there exists an
NR-reduction ti=ti l,ti2,..,tik such that R(GH,tik,si*). It can easily be shown that the
reduction f(tl,..,til,..,tn), f(tl,..,ti2,..,tn), .., f(tl,..,tik,..,tn) is also an NR-reduction. Clearly
R(G,H,f(tl ,..,tik,..,tn),F2). QED.

Lemma 6. Let P be an F* program. Let R(GH,E0,FO) and FO,..,Fn, n>--O, be an NR-
reduction. Then there is an NR-reduction EO,..,Ek such that R(G,HEk,Fn).

Proof. Similar to that of Lemma 5. QED.

Theorem 4. Reduction-completeness of F* for normal forms. Let P be an F* program
and DO a term. Let DO,Dl,..,Dn, n>=O, be a reduction in P, where Dn is in normal form.
Then there is an NR-reduction DO,E1,..,Em=Dn, m>=O, in P.

Proof. By induction on length n of DO,D 1,..,Dn. If n--O, DO is already in normal form, so
DO is the required NR-reduction.

Let n>O and assume theorem for Dl,..,Dn. Then there is an NR-reduction
D1,F2,..,Fp=Dn. The situation can be laid out as follows:

Dn (in normal form)

D2
I
D1->F2-*>Fp=Dn
I
DO->EI-*>Em

Since DO->Dl there are terms GH, such that G=>H and DI=DO[G/H]. Hence
R(G,H,D0,D1). Since D1,F2,..,Fp is an NR-reduction, by Lemma 6, there is an NR-
reduction DO,EI,..,Eq such that R(G,H,Eq,Fp). It is easily shown, by induction on length

of terms, that there is an NR-reduction Eq,..,Fp. In each step in it, an occurrence of G is
replaced by H. The required NR-reduction is then DO,El,..,Eq,..,Fp=Dn=Em. QED.

1II. DETERMINISTIC F*

111.1 INTRODUCTION

A class of F* programs called Deterministic F* (DF*) is now defined and shown to
possess several useful computational properties. In particular, every DF* program
satisfies confluence and directedness. Confluence is shown to hold for any F* program
which satisfies just restriction (f) below.

Confluence, means that if for terms M,N,P, M-*>N, and M-*>P, then there exists term Q
such that N-*>Q, and P-*>Q. It has the immediate consequence that every term has at
most one normal form. Hence DF* can be used as a functional programming system.
Also, if a DF* program is interpreted as an equality theory, equality of two terms can be
determined by checking whether their normal forms are syntactically identical.

Directedness, for simplified forms, means that if a term has a simplified form then any
N-reduction starting at that term, if extended far enough, computes it. Moreover, all
successful N-reductions are of equal length. Directedness, for normal forms, means that
if a term has a normal form, then any NR-reduction starting at that term, if extended far
enough, computes it. Moreover, all NR-reductions ending in normal forms are of equal
length. Due to directedness, no searching among alternative N- or NR-reductions is

necessary.

111.2 DEFINITION OF DF*

A DF* program is an F* program P satisfying two restrictions:

(f) Let LHS I and LHS2 be variants of heads of two rules in P, such that LHS 1
and LHS2 have no variables in common. Then LHSI and LHS2 do not unify.

(g) Let f(L1,..,Li,..,Lm)=>RHS be a rule in P, where Li is not a variable. Then in
every other rule f(K 1 ,.. ,Ki,..,Km)=>RHS I in P, Ki is not a variable.

Again, as can be seen from examples in this paper, and especially in Section VI, DF* is
also quite expressive. Note that restrictions (a)-(e) are upon rules while (f) and (g) are
upon the entire program. In the following, the first three rules do not constitute a DF*
program because they violate (f) and the next four do not because they violate (g):

insert(A,[])=>[A].
insert(A,[UIV)=>[A,UIVI.
insert(A,[UIVI)=>[Ulinsert(A,V)].

II-2 Deterministic F*

f(X,[]')=].

a=>a.
b=>[].

Restriction (f), supported by (a)-(e), ensures confluence. Restriction (g), supported by
(a)-(f), ensures directedness. In particular, given a term f(tl,..,ti,..,tn), it is possible to
determine, at compile time, whether ti needs to be simplified. It needs to be, only if the
ith argument in the head of any F* rule defining f is a non-variable. Moreover, as shown
below, the arguments of f which do need to be simplified can be simplified in any order.

The importance of select may be emphasized from the observation that even with
restrictions (a)-(g), every outermost reduction strategy is not reduction complete. For
example, given the DF* program:

g([],X)=>[.

and the term E=g(b,a), a rightmost-outermost reduction strategy would compute the
infinite reduction g(b,a),g(b,a) However, there exists a successful leftmost-outermost
reduction g(b,a),g([],a),[]. Select, of course, would compute this second reduction.

Thus, select is more than an outermost reduction strategy. For DF*, it may perhaps be
called outermost-call-by-need. Note that it is still non-deterministic. However due to
directedness, the non-determinism is benign.

Sp(A,B). Let P be an F* program, and A,B be terms. Let G1,..,Gm, m>--O, be mutually
non-overlapping subterms in A, and Hl,..,Hm be terms such that for each i=<m, Gi=>Hi,
and B is the result of simultaneously replacing Gl,..,Gm, in A, by respectively, HI,..,Hm.
Then we say Sp(AB). Note that G 1,..,Gm need not include all, or even one, of the
mutually non-overlapping subterms of A which reduce as a whole. The subscript on S is
dropped if clear from context.

R@i. Let R be an N-reduction EO,E1..,Em, m>=O, where for no i, Ei=>Ei+1. Then
there is some function symbol f, such that each Ei is of the form f(p 1,..,pk). Let
EO=f(tl,..,tk), and for any p, let Rp be EO,E1,..,Ep.

For any 1=<i=<k, RO@i is defined to be the singleton sequence ti. For any j~m, let
Ej=f(al,..,an-l,an,an+l,..,ak), and Ej+l=f(al,..,an-l,bn,an+l,..,ak) such that an reduces to
bn in an N-step. If n--i, then Rj+l@i=Rj@i:bn, otherwise, Rj+l@i=Rj@i. Here : is
concatenation of a term at the end of a sequence of terms.

111-3 Deterministic F*

For example, with the rules a=>a, b=>bl, bl=>b2, and the N-reduction R=f(a,b),f(a,bl),
f(a,bl),f(a,b2), R@ 1=a,a, and R@2=b,bl,b2. Thus, roughly, R@i is the sequence,

without duplicates, of ith arguments of the outermost function symbol of the members of

the N-reduction R.

R@u. R@u is a generalization of R@i to positions in terms. Let R be an NR-reduction
EO,E1 ,..,Em, m>--O, where EO is simplified. Let AO,Al ,..,Ap be unsimplified terms in EO
such that no Ai is properly contained in any other unsimplified term. Let the positions of
AO,A1,..,Ap, in EO be ul ,..,up respectively. Then, for each j~m, Ej+1 can be thought of

as being derived from Ej by replacing a term A at one of the ui, by another term B.

Moreover, A reduces to B in an NR-step.

For any ui in ul,..,up, RO@ui is defined to be the singleton sequence Ai. For any j, jim,

let Ej+ 1 be derived from Ej by replacing a term P at position u in Ej by Q, where u is in

ul,..,up. If u=ui, Rj+l@ui=Rj@ui:Q, otherwise, Rj+l@ui=Rj@ui.

11.3 CONFLUENCE AND DIRECTEDNESS OF DF*

Confluence and directedness are shown by deriving the following results, for any DF*

program P:

(a) Let F1,E1,F2 be terms such that S(F1,E1), and FI->F2. Then there exists a
term E2 such that EI-*>E2, and S(F2,E2).

(b) If there are two N-reductions starting at the same term and ending in terms in

simplified form, then these terms are identical, and the N-reductions are of equal

length.

(c) Let EOE1,..,En be a successful N-reduction. Let EO=-FO,F,..,Fp, be an
unsuccessful N-reduction, i.e. Fp is not simplified. Then p<n, and there exists

Fp+l such that Fp reduces to Fp+l in an N-step.

Now, (a) is iterated to obtain confluence. (c) requires (b). From (c) we infer that if a term

EO has a successful N-reduction then no N-reduction starting at EO is infinite, or

terminates in failure. Hence, every N-reduction must terminate in a term in simplified

form. Hence directedness for simplified forms. Similarly, directedness for normal forms.

Lemma 1. Select never chooses overlapping terms. Let P be a DF* program. Let E

and F be terms such that select(E,F). Then, for all G, select(E,G) implies that G is not

properly contained in F.

M-4 Deterministic F*

Proof. By induction on length of E. As before, the definition of select, for any term
f(Tl,..,Tn) is:

selectp(f(Tl,..,Tn),f(Tl,..,Tn)) if f(Tl ,....Tn)=>pX.

selectp(f(T1,..,Ti,..,Tn),X) if
there is a rule f(L1,..,Li,..,Ln)=>RHS in P, and
there is no substitution a such that Ti=Lia, and
selectp(Ti,X).

If E is a 0-ary function symbol, the lemma holds. Otherwise let E=f(tl,..,ti,..,tm) and let
the lemma hold for each of tl,..,tm. Suppose select(E,F) but F*E. Then for some ti in
tl,..,tm, select(ti,F). Suppose select(E,G). If G=E then G is clearly not contained in F.
Otherwise, for some tj in tl,..,tm, select(tjG). If j--i, by induction hypothesis, G is not
properly contained in F. If j*i, of course, G is not properly contained in F.

Suppose select(E,F) and F=E. Then there exists a rule f(M1,..,Mi,..,Mm)=>RHS such
that E matches its head. Now suppose that there also exists G such that select(E,G), and
G is properly contained in F. Hence, for some ti in tl,..,tm, select(ti,G). Hence there is a
rule f(L1,..,Li,..,Lm)=>RHS1 such that ti does not match Li. Hence Li is not a variable.
By restriction (g) Mi is also not a variable. Hence ti is in simplified form. But then
select(ti,G) fails. Contradiction. QED.

Lemma 2. Let P be a DF* program. Let G be a term. Then there is at most one term H

such that G=>H.

Proof. By restriction (f). QED.

Lemma 3. Let (Y and r be two substitutions each defining only the variables X 1,..,Xm,
m>=O, such that for any i=<m, where <Xi,si> appears in a, and <Xi,ti> in c, S(si,ti).
Let M be a term, possibly containing variables, but only from X1,..,Xm. Then
S(Ma,Mr).

Proof. By induction on length of M. QED.

Lemma 4. Let P be a DF* program. Let A=f(tl,..,tm), m>0, and B=f(tl*,..,tm*), such
that for each i=<m, S(ti,ti*). Let A=>C. Then there exists D, such that B=>D and S(CD).

Proof. Let A reduce to C by the rule LHS=>RHS. Then, there exists a substitution a such
that A=LHSa and C=RHSa. It is easily verified that there exists substitution % such that
B=LHSr, a and r define the same variables, and for each i, where <Xi,pi> appears in a
and <Xi,qi> in t, S(pi,qi). Hence B=>RHSr=D. By Lemma 3, S(C,D). QED.

111-5 Deterniinistic p*

Lemma 5. Let P be a D)F* program. Let FIEl,F2 be terms such that S(F1,El), and Fl-
>F72. Then there exists term E2 such that E1-*>E2, and S(F2,E2).

Proof. By induction on length of Fl. The situation can be visualized in the following
diagram:

F:1

El F2 S(Fl,El), Fl->F2

E2

Case 1. F1 is a 0-ary function symbol. Since Fl->F2, Fl=>F2. If Fl=El, take
E2=F2. Then El=>E2, and S(F2,E32), as required. Otherwise, Fl=>El. By restriction
(f), El=F2. Take E2=F2. Again, El-*>E2, and S(F2,E2), as required.

Case 2. Fl=f(tl,..,tm), m>O. Assume Lemma for 11 ,..,tm.

Case 2-1. Fl reduces to El as a whole. If F1 reduces to F2 as a whole, by
restriction (f), F2=El. Take E2=El. Then El-*>E2, and also S(F2,E2), as
required. Otherwise, there is some j=<m, such that tj->tj*, and
F2=f(tl,..,tj*,..,tm). Hence S(FlF2). By Lemma 4, there exists E2 such that
F2=>E2 and S(El,E2). But then El-*>E2. Since F2=>E2, S(F2,E2), as required.

Case 2-2. Fl does not reduce as a whole to El. Then El=f(sl,..,sm), and for
each i=<m, S(ti,si).

If F I=>F2, then, by Lemma 4, there exists E2 such that E I=>E2, and S (F2,E2), as
required. Otherwise, there is some j=<m, such that tj->tj*, and F2=ftl,..,tj-
I ,tj*,tj+l ,..,tm). By induction hypothesis, there exists p, such that sj-*>p and
S(tj*,p). Take E2=f(sl,..,sj-l,p,sj+l,..,sm). Clearly, El-*>E2, and also, S(F2,E2),
as required. QED.

Lemma 6. Let P be a DF* program, and M,N,P be terms such that S(MN) and M-*>P.
Then there exists term Q such that N-*>Q and S(P,Q).

111-6 Deterministic F*

Proof. By iterating Lemma 5. QED.

Lemma 7. Let P be a DF* program, and M,NP be terms such that M->N, and M-*>P.

Then there exists term Q such that N-*>Q, and P-*>Q.

Proof. Since M->N, S(M,N). By Lemma 6, there exists term Q such that N-*>Q and
S(P,Q). Hence P-*>Q, as required. QED.

Theorem 1. Confluence of DF*. Let P be a DF* program, and M,NP be terms such that
M-*>N, and M-*>P. Then there exists term Q such that N-*>Q, and P-*>Q.

Proof. By iterating Lemma 7. QED.

Corollary. Uniqueness of normal forms. Let P be a DF* program. Then every term has
at most one normal form.

Lemma 8. Let R be an N-reduction f(pl,..,pk)=E0,E1,..,Em such that for no i, Ei=>Ei+1.
Then the length m of EO,E1,..,Em is equal to the sum of the lengths of R@ 1,
R@2,..,R@k.

Proof. By induction on m. If m=O, then clear. Assume lemma for EO,..,Em-1. There
exists exactly one n, such that Em- 1 =f(t l,..,tn- 1,tn,tn+ 1,..,tk), Em=f(t 1,..,tn-
l,un,tn+ 1,..,tk), and tn reduces to un in an N-step. So, for every i, i*n, (EO,..,Em-
1)@i=(EO,...Em-l,Em)@i. Only for n, (EO,..,Em-l,Em)@n=(EO,..,Em-l)@n:un. By
induction hypothesis, the lemma is clear. QED.

Lemma 9. Let P be a DF* program. Let EO,EI,..,En be a successful N-reduction. Then
for every successful N-reduction EO,F1,..,Fp, p=n and Fp=En.

Proof: By induction on n. If n=O then EO is simplified and the lemma holds trivially. Let
n>1. Assume hypothesis for all successful N-reductions of length less than n.

Since EO,E1,..,En is a successful N-reduction, there exists Ek, 0=<k<n, such that for no i,
0=<i<k, Ei=>Ei+l, but Ek=>Ek+l, and Ek+l,..,En is a successful N-reduction. Let
EO=f(tl ,..,tn), m>=O. Since n>O, f is not a constructor symbol. Then Ek=f(sl ,..,sm) for
terms sl,..,sm. Similarly, for the successful N-reduction F,F1,..,Fp, there exists Fj with
properties similar to those of Ek. The situation can be laid out in the following diagram:

E0=f (11, .., tm)-....*>Ek=f (sl, .., sm) =>Ek+l--*>En

F0=f (tl, .. , tm)-....*>Fj=f (ql, .. , qm) =>Fj+l--*>Fp

111-7 Detenninistic F*

Consider any ti in tl,..,trm.

Case 1. ti is simplified. Then, by definition of select, ti=si. Similarly, ti=qi. Hence qi=si.

Case 2. ti is unsimplified. If si is simplified, then there exists a successful N-reduction
(EO,..,Ek)@i, of length less than n.

By restriction (g), the ith argument in the head of any rule in P, defining f, is a non-
variable. Hence, qi is also simplified. Hence there exists a successful N-reduction
(FO,..,Fj)@i. By induction hypothesis, its length is equal to that of (EO,..,Ek)@i, and
qi=si.

If si is unsimplified, then, by restriction (g), and definition of select, ti=si=qi.

Hence Ek=Fj. By Lemma 8, the length of EO,..,Ek is the sum of lengths of (EO,..,Ek)@i
such that ti is unsimplified but si is simplified. Again, by Lemma 8, and Case 2, this is
also the length of FO,..,Fj. Hence, k=j. By restriction (f), Ek+I=Fj+l. Now, Ek+l,..,En,
is a successful N-reduction of length less than n. By induction hypothesis, its length is
equal to that of the successful N-reduction Fj+l,..,Fp, and En=Fp. Hence, also, the length
of EO,..,En is equal to that of FO,..,Fp. QED.

Lemma 10. Let P be a DF* program. Let EO,E1,..,En and EO=-FO,Fl,..,Fm be two NR-
reductions such that En and Fm are in normal form. Then En=Fm and n--m.

Proof: Note that En=Fm follows directly from the confluence of DF*. We focus on
showing that n=m, and proceed by induction on length of EO,E1,..,En. If n=0, then clear.
Otherwise, let n>O and assume the lemma for NR-reductions of length less than n.

Case 1. EO is unsimplified. Then, there exists Ek, 0<k=<n such that EO,..,Ek is a
successful N-reduction. Also, there exists Fj, O<j=<m such that EO,..,Fj is a successful
N-reduction. By Lemma 9, Fj=Ek and j=k. Now Ek,..,En, and Fj,..,Fm are also
NR-reductions. The length of Ek,..,En is less than n, so by induction hypothesis, n--m.

Case 2. EO is simplified. Then E0=c(tl,..,tq) for terms tl,..,tq and constructor symbol c.
If EO is in normal form, then the theorem holds. Otherwise, let AO,Al,..,Ap be
unsimplified terms in EO such that no Ai is properly contained in any unsimplified term.
Consider any Ai in AO,Al,..,Ap.

Let the position at which Ai occurs in EO be ui. Then, since En is in normal form,
(EO,..,En)@ui is an NR-reduction ending in a normal form. Similarly obtain
(F0,..,Fm)@ui.

M-8 Deterministic F*

By reasoning as in Case 1, the length of (EO,..,En)@ui is equal to that of (FO,..,Fm)@ui.
It can be shown, analogously to Lemma 8, that the length of EO,..,En is equal to the sum
of the lengths of each (EO,..,En)@ui. Similarly, for length of FO,..,Fm. Hence m=n.
QED.

Lemma 11. Let P be a DF* program and EO a term. Let EO,E1,..,En be a successful N-
reduction. Let EO=-FO,Fl,..,Fp, be an unsuccessful N-reduction, i.e. Fp is not simplified.
Then p<n, and there exists Fp+1 such that Fp reduces to Fp+1 in an N-step.

Proof: By induction on the length of EO,..,En. If n=O then EO is in simplified form and
the only N-reduction starting at EO is EO itself, so the lemma is clear. Let n>O. Then EO
is not simplified. Assume lemma for all successful N-reductions of length less than n.
Since EO,El,..,En is a successful N-reduction, there exists Ek, 0=<k<n such that for no i,
0=-<i<k, Ei=>Ei+l, but Ek=>Ek+l, and Ek+l,..,En is a successful N-reduction.
Let EO=f(tl,..,tm), m>=O. Let Ek--f(sl,..,sm). We have two cases:

Case 1. There exists Fj, 0=<j<p such that for no i, 0=-<i<j, Fi=>Fi+l, but
Fj=>Fj+1, and Fj+l,..,Fp is an N-reduction. Let Fj=f(ql,..,qm). The situation can be
visualized in the following diagram:

E0=f (tl, .. , tin)--*>Ek=f (sl, .. , sin)=>Ek+l--*>En

F0=f tl, .. , tm) -- *>FJ=f (ql, .. , qm) =>Fj+I--*>Fp

By reasoning as in Lemma 9 above, Ek=Fj, and k=j. By restriction (f), Ek+I=Fj+l. By
induction hypothesis, p<n. Furthermore, there exists Fp+l such that Fp reduces to Fp+l
in an N-step.

Case 2. There does not exist Fj in FO,..,Fp such that Fj=>Fj+l. Let Fp=f(ql,..,qm). The
situation can be visualized as:

E0=f (tl, .. , tm) -- *>Ek=f (sl, .. , sm) =>Ek+l--*>En

F0=f(tl, .. ,tm)--*>Fp=f(ql,..,qm) (unsimplified)

It is easily seen that either Fp=>Fp+1, or there exists i in 1,..,m such that qi is not
simplified, but si is. By induction hypothesis, there exists ri such that qi reduces to ri in
an N-step. Hence Fp reduces to f(ql,..,ri,..,qm) in an N-step. Also, by Lemma 8, and
induction hypothesis, p<n. QED.

Theorem 2. Directedness for simplified forms. Let P be a DF* program. Let EO

111-9 Deterministic F*

be a term and let EO,..,En be a successful reduction. Then any N-reduction starting at
EO, if extended far enough, would terminate in a term in simplified form.

Proof. By reduction-completeness for simplified forms, (Theorem 2, Section II), and
iterating Lemma 11. QED.

Lemma 12. Let P be a DF* program and EO a term. Let EOE 1,..,En be an NR-reduction
such that En is in normal form. Let EO=FO,F1,..,Fp, be an NR-reduction such that Fp is
not in normal form. Then, p<n, and there exists Fp+l such that Fp reduces to Fp+1 in an
NR-step.

Proof: By induction on length of EO,El,..,En. If n--O, then clear. Otherwise, assume
Lemma for all NR-reductions of length less than n, and ending in normal forms.

Case 1. EO is unsimplified. By a reasoning very similar to that in proof of Lemma 11.

Case 2. EO is simplified. If EO is in normal form, the lemma trivially holds. Otherwise,
as in Case 2 of Lemma 10. QED.

Theorem 3. Directedness for normal forms. Let P be a DF* program. Let EO be a
term and let EO,..,En be a reduction where En is in normal form. Then any NR-reduction
starting at EO, if extended far enough, would terminate in a normal form.

Proof By reduction-completeness for normal forms, (Theorem 4, Section II), and
iterating Lemma 12. QED.

IV. LABELED DETERMINISTIC F*

LV.1 INTRODUCTION

Intuitively, it can be seen that in an N-reduction a term is reduced only when it is
necessary for simplifying the first term in the reduction. In this sense, an N-reduction
conserves computation. For example, with the rules:

f(X)=>[X].
a=>[].

there exists the N-reduction f(a),[a]. There is no N-reduction starting at f(a) in which a is
reduced. However, it can also happen that in an N-reduction, several copies of the same
term are reduced. This can happen when use is made of a rule in which a variable occurs
more than once on the right hand side. In this sense, an N-reduction wastes computation.
For example, with the rules:

f(X)=>g(X,X).
g([],[])=>[].
a=>[].

there exists the N-reduction f(a),g(a,a),g([],a),g([], [_),[]. The two occurrences of a in the
second term are copies of each other, yet they are reduced separately. This is the same
problem which arises with a call-by-name procedure call mechanism in programming
languages.

If we can arrange that when a term is reduced, all copies of it are also reduced, then N-
reductions could become considerably shorter. In fact, it is shown that they become
minimal. An N-step in which all copies of a term are replaced is called an NA-step. Thus
it is distinguished from an N-step in which only a single copy of a term is replaced. A
sequence of NA-steps is called an NA-derivation. The prefix NA stands for "normal-all".
Minimality yields a strong form of laziness, since terms are simplified with minimum
computational effort.

The notion of a copy of a term, however, has two legitimate interpretations. The first is
simply that any two occurrences of a subterm in a term are copies of each other.

The second is obtained from examining representations of terms as directed acyclic
graphs. A 0-ary function symbol f is represented as a graph consisting of just a single
node with f stored in it. A term f(tl,..,tn) is represented as a graph whose root is a node
with n+l fields. The first field stores f and for each l=<i=-<n, the ith field stores a pointer

IV-2 Labeled deterministic F*

to the graph representation of ti. A term can have many graph representations. For
example, the two occurrences of a in f(a,a) can be represented by a single graph, or by
distinct graphs. Now, two occurrences of a subterm in term E are said to be copies of
each other only if, in the graph representation of E, they have the same graph
representation.

We adopt the second interpretation since it enables us to develop a simple proof of
minimality and also to implement replacement of all copies of a subterm with a small
overhead. Graph representations of terms are, in turn, represented using labeled terms.
The address of each node in a graph is represented by a label. Let there be a graph G with
root node N. Let N contain m+1 fields, where the first field contains the symbol f and the
rest of the m fields contain pointers to, respectively, graphs G1,..,Gm. Let the address of
N be represented by label a. Then the representation of G is the labeled term f(c,tl,..,tm)
where for each i, the representation of Gi is the labeled term ti.

A subset of DF* called, Labeled Deterministic F* (LDF*), is defined. Notions of labels
[Vuillemin 1974], labeled terms, ordinary terms, and ordinary programs are introduced.
Reductions in LDF* are intended to mimic graph reduction. In particular, it is ensured
that whet a new node is allocated in graph reduction, a label not previously used in the
LDF* reduction is generated.

LDF* is shown to be minimal in the following sense: where P* is an LDF* program, and
E a proper term, let there be a shortest successful reduction of E. Then there is a
successfal NA-derivation of E of lesser or equal length.

It is also shown that with each ordinary DF* program P, one can associate an LDF*
program P*, such that if there is a successful reduction in P, there is a successful
reduction in P* of exactly equal length. Hence, to simplify terms in P in a minimum
number of steps, it is sufficient to transform P to P* and use NA-derivations.

Some main ideas in our proof are (a) in each reduction step, a label is eliminated, so (b)
the size of the elimination-set (E-set) of a reduction, i.e. the set of labels eliminated in the
reduction, is a lower-bound on its length, (c) the size of the E-set of an NA-derivation of
a proper term, is exactly equal to its length.

IV.2 DEFINITION OF LDF*

Labels. Let a, I3, 4, al, J31, 41,.. be an enumerably infinite subset of the set of 0-ary
function symbols in F*. Each member of this list is called a primitive label.

Let * be a binary function symbol in F*. A label is defined as follows. A primitive label

IV-3 Labeled deterministic F*

is a label. If x and y are labels then x*y is also a label. A label a is said to be a proper

initial segment of label P if either 1=a'8, or j3--*8 and a is a proper initial segment of .

Labeled terms. Where f is an n+l-ary function symbol, n>--O, f**, ac a label and tl,..,tn

labeled terms, f(ax,tl ,..,tn) is a labeled term. ax is called the outermost label of f(otl,..,tn).

For example, where f is a 4-ary function symbol and a,b are 1-ary function symbols,

f(8,a(a),b(3),a(4)) is a labeled term, and 8 is the outermost label of this term. Note that a

label standing alone is not a labeled term. Neither is a labeled term of the form A*B.

Also, note that a labeled term never contains any variables.

A labeled term is said to be in normal form if it contains only constructor symbols and

labels.

Maximal labels. A label is maximal in a labeled term if it is not a proper initial segment

of any other label in that term.

Proper terms. A labeled term E is called proper if (a) all its labels are maximal, and (b)

for every two subterms A and B of E, if A and B have the same outermost label then

A=B. For example, f(a,b(t),c(8)) is a proper term. However, g(a,a(a*8)) is not a proper

term since it violates (a), and f(a,b(a) is not a proper term since it violates (b).

Ordinary terms, ordinary rules, and ordinary programs. A term in F*, possibly

containing variables, a rule in F*, or an F* program, is said to be ordinary if it does not

contain any labels, nor any occurrence of the symbol *.

A mapping 1. Let F be the set of all function symbols in F*, except *, and the primitive

labels. Let there be an injection Y, between F and F which maps each n-ary function

symbol in F to an n+l-ary function symbol in F. Moreover, I always maps a constructor

symbol to a constructor symbol, and a non-constructor symbol to a non-constructor

symbol.

Labeled versions of ordinary terms, possibly containing variables. Let E be an

ordinary term, possibly containing variables. If E is a variable then its labeled version is

E itself. Otherwise, let E=f(tl,..,tn), n>=O. Its labeled version is f_(a,tl_,..,tn_) where a

is a label, ,(f)=f, and for each i, ti- is a labeled version of ti. For example, where Z

maps f to f_ and a to a, a labeled version of f(a,a) is f_(a_(j5),a_(8)).

Labeled versions of ordinary rules. Let LHS=>RHS be an ordinary F* rule. A labeled

version of this rule, LHS*=>RHS*, is defined as follows:

IV-4 Labeled deterministic F*

Let LHS=f(L1,..,Lm). Then LHS*=f_(L,Ll,..,Lm) satisfying the following conditions:
(a) f_=,(f), (b) L is a variable, (c) If Li is a variable, Li_=Li, otherwise Li=c(X1,..,Xm),
and Li_=c_(KiX 1,..,Xm), Ki a variable, E(c)=c_, and (d) a variable occurs at most once
in LHS*.

Let RHS 1 be a labeled version of RHS in which all labels are distinct, and for no two of
these is one a proper initial segment of the other. Let these labels be 131,..,3k. Then,
where LHS*=f(L,Ll,..,Lm), RHS* is obtained by replacing, in RHS1, each P3i by L*P3i.

Labeled Deterministic F* Programs. Let P be an ordinary DF* program, and let P*
consist of labeled versions of rules in P. Then P* is called a labeled deterministic F*
(LDF*) program. For example, where P consists of:

append(nil,X)=>X
append(cons(U,V),W)=>cons(U,append(V,W))

and I maps append, nil, and cons to append-, nil- and cons- respectively, P* consists of:

append_(L,ni_(L),X)=>X.
append_(L,cons_(K 1,U,V),W)=>cons_(L* J31,U,append_(L* o32,V,W))

where 3 1, and J02 are distinct labels, and neither is a proper initial segment of each other.
Note that each LDF* program is a DF* program as well as an F* program. Also, each
labeled term is an F* term. Hence, results of all previous sections also hold for LDF*
programs and labeled terms.

NA-steps and NA-derivations. Let P be an LDF* program and E,G,H be labeled terms.

Suppose selectp(EG) and G=>pH. Let El be the result of replacing all occurrences of G
by H in E. Then we say that E reduces to El in an NA-step in P. The prefix NA in N-
step stands for "normal-all". A sequence of labeled terms EO,E1,.. is an NA-derivation if
for each i, when Ei, and Ei+l both exist, Ei reduces to Ei+1 in an NA-step. For example,
given the rule a(L)=>b(L*cc), the term f(o3,a(8),a(8)) reduces in an NA-step to f(13,b(8*cz),

b(8*a)).

Leftmost steps and reductions. Let P be an F* program, not necessarily ordinary. Let
E be a term, and G and G I two of it, subterms. G is said to be to the left of G I in E, if

either (a) they both occur at the same position in E, or (b) in the depth-first or preorder
traversal of the tree representation of E, the function symbol which is the root of G occurs
before the function symbol which is the root of G 1.

Let select(E,G), G=>H. Then E reduces to F in a leftmost N-step, if for every G1,

IV-5 Labeled deterministic F*

select(E,G 1) implies G is to the left of G I in E, and F=E[G/H].

Let select(E,G), G=>H. Then E reduces to F in a leftmost NA-step, if for every G 1,
select(E,G 1) implies G is to the left of G 1 in E, and F is the result of replacing all
occurrences of G in E by H.

Definitions of leftmost N-reductions and leftmost NA-derivations are the obvious ones.

Elimination sets or E-sets. Let AO,A 1,.. ,An be a reduction where each Aj is a labeled
term. For any i, let Ai+1=Ai[G/IH] where G=f(cc,tl,..,tm). Then we say that the
function-label pair (FL-pair) <f,ct> has been eliminated in the reduction Ai,Ai+l. The
elimination set or E-set of a reduction is defined as the set of all FL-pairs eliminated in
the reduction. Since elimination of an FL-pair requires one reduction step, the size of this
set (number of elements in it) is a lower bound on the length of the reduction (the number
of steps in it).

Since an NA-step can be thought of as a sequence of reductions steps, an NA-derivation

can be thought of as a reduction. Hence, the E-set of an NA-derivation is the E-set of the
corresponding reduction.

IV.3 MINIMALITY OF LDF*

Let P be an LDF* program and E a labeled term. We already know from completeness of
DF* that if E has a successful reduction, it has a successful N-reduction. By directedness
of DF*, it has a successful leftmost N-reduction. We now show the following:

(a) If E has a successful reduction RO, E has a successful N-reduction RI whose
E-set is a subset of the E-set of RO.

(b) If R I and R2 are two successful N-reductions of E, their E-sets are identical.

(c) If E has a successful leftmost N-reduction R2, it has a successful leftmost
NA-derivation R3. Furthermore, the E-set of R3 is a subset of the E-set of R2.

(d) If E is a proper term, the size of the E-set of any NA-derivation starting at E is
equal to the number of NA-steps in that derivation.

(e) Let P be an ordinary DF* program, and P* its labeled version. Let EO be an

ordinary term, and EO* a labeled version of EO. Let EO,EIE2,... be a reduction in
P. Then there exists a reduction EO*,EI*,E2*,... in P*, such that for each i, Ei* is

a labeled version of Ei.

IV-6 Labeled deterministic F*

Let E be a proper term. Let RO be a shortest successful reduction of E. Then its length is
greater than or equal to the size of its E-set. By (a), there exists R1, an N-reduction of E
whose E-set is a subset of that of RO. By directedness of DF*, there exists R2, a
successful leftmost N-reduction of E. By (b), the E-set of RI is identical to that of R2.
By (c), there exists R3, a successful leftmost NA-derivation of E whose E-set is a subset

of that of R2. By (d), the length of this NA-derivation is at most the length of RO.
Hence, leftmost NA-derivations are minimal for simplifying proper terms.

Now, let P be an ordinary DF* program and P* its labeled version. Let there be a
successful reduction R of a term E in P. By (e) there exists a successful reduction R* of a
labeled version E* of E. This version can always be chosen to be proper. By minimality
of LDF*, there is a successful NA-derivation starting at E* of length less than c: ec-al to
that of R* or R. Hence, to simplify terms in a minimum number of steps, it is suf ncient to
transform P to P* and use leftmost NA-derivations. This reasoning is now carried out
formally and in detail.

IV.3.1 Existence of successful leftmost NA-derivations

Lemma 1. Let P be an LDF* program. Let EOFO be labeled terms such that EO->FO. If
EO reduces to El in a leftmost N-step then there exists F1 such that E1-*>Fl, and (a)
either F1=FO, or (b) FO reduces to F1 in a leftmost N-step, and the FL-pair eliminated in
FO,Fl is the same as that eliminated in EO,E1.

Proof. By induction on length of EO. We can draw the following diagram:

EO ------ > FO
I I
leftmost I FO=F1 or
N-step I FO reduces to F1 in a leftmost N-step
I I
El ----- *> F1

Case 1. EO=f(ot) for some 1-ary function symbol f and label ac. Since EO->FO, EO=>FO.
So, select(EO,EO) and due to restriction (f), EI=FO. Take FI=F0. Clearly, EI-*>Fl.

Case 2. EO=f(,tl ,..,tm), for some m+l-ary function symbol f, m>O, label (x, and labeled
terms tl ,..,tm.

Case 2-1. EO=>FO. Similar to Case 1. EI=FI=FO and El-*>Fl.

Case 2-2. Not EO=>I-0. Then FO=f(ct,t I*,..,tm*), and there exists j such that tj-

IV-7 Labeled deterministic F*

>tj* and for each i, iej implies ti=ti*.

Suppose EO=>E1. Then the FL-pair eliminated in EO,E1 is <fc>. It is easily

verified by induction on length of EO, that FO=>Fl and E1-*>F1. Also, FO
reduces to Fl in a leftmost N-step. Finally, the FL-pair eliminated in F0,F1 is also

<fx.>.

Suppose not EO=>E1. Then, there is some k, such that El=f(tl ,..,tk-

1,sk,tk+ 1,.. ,tm), and tk reduces to sk in a leftmost N-step. By induction

hypothesis, there exists sk* such that sk-*>sk*, and either tk*=sk*, or tk* reduces

to sk* in a leftmost N-step, and the FL-pair eliminated in tk,sk is the same as that

eliminated in tk*,sk*.

If tk*=sk*, let Fl=F0. Clearly, EI-*>F1. Otherwise, let Fl=f(a,tl*,..,tk-

l*,sk*,tk+l*,..,tm*). Since tk* reduces to sk* in an N-step, tk* is not simplified.

Hence, using restriction (g), it is easily verified that FO reduces to F1 in a leftmost

N-step. In particular, in this step, tk* reduces to sk* in a leftmost N-step. Hence,

El-*>F1, and the FL-pair eliminated in E0,E1 is the same as that eliminated in

FO,F1. QED.

Lemma 2. Let P be an LDF* program. Let EO,FO be labeled terms such that EO-*>FO. If

EO reduces to El in a leftmost N-step then there exists F1 such that El-*>F1, and (a)

either Fl=FO, or (b) FO reduces to Fl in a leftmost N-step, and the FL-pair eliminated in

F0,F1 is the same as that eliminated in EO,El.

Proof. By induction on length of the reduction EO,..,FO, and using Lemma 1. QED.

Lemma 3. Let P be an LDF* program. Let EO,FO be labeled terms such that EO-*>FO and

let there be a successful leftmost N-reduction EO,E1,..,En. Then there is a successful

leftmost NA-derivation FO,F1,F2,..,Fk whose E-set is a subset of that of EO,El,..,En.

Proof. By induction on length n of EO,.. ,En, and using Lemma 2. QED.

Theorem 1. Let P be an LDF* program. Let EQ be a labeled term and EO,E1,..,En a

successful leftmost N-reduction. Then there is a successful leftmost NA-derivation

EO,F1,F2,..,Fk whose E-set is a subset of that of EO,E ,..,En.

Proof. Since EO-*>EO, apply Lemma 3. QED.

IV-8 Labeled deterministic F*

IV.3.2 E-sets of N-reductions

Lemma 4. Let P be an LDF* program and E1,F1,GH be labeled terms such that:

(a) R(GH,E1,F1), and
(b) F1 reduces to F2 in an N-step, and
(c) The outermost function symbol and label of G are, respectively, g and cc, and
(d) <r,3> is the FL-pair eliminated in the reduction Fl,F2.

Then there exists an N-reduction El,..,E2 such that its E-set is included in {<g,cc>,<r,O>)

and R(GH,E2,F2).

Proof. Exactly parallel to proof of Theorem 1, Section II. QED.

Lemma 5. Let P be an LDF* program. Let El,F1,GH, be labeled terms such that
R(G,H,E1,Fl). Let the outermost function symbol and label of G be g and aX
respectively. Let Fl,F2,..,Fm be a successful N-reduction. Then there exists a successful
N-reduction El ,..,En whose E-set is contained in the union of (<g,(>) and the E-set of

F1,F2,..,Fm.

Proof. By induction on length of F1,..,Fm. QED.

Lemma 6. Let E1,F1,G2,..,Gm be a successful reduction. Then there is a successful N-
reduction El,..,En such that the E-set of El,..,En is contained in that of E1,F1,G2..,Gm.

Proof. By induction on length of El,F1,G2..,Gm, and Lemma 5. QED.

Lemma 7. Let P be an LDF* program. Let EO be a labeled term and EO,E 1,..,En and
EO,Fl,..,Fp two successful N-reductions. Then, the E-set of one is identical to that of the

other.

Proof. Exactly analogous to the proof of Lemma 9, Section III, that any two successful
N-reductions of a term are of equal length, and end in the same simplified form. QED.

IV.3.3 Reductions of proper terms

Lemma 8. Let P be an LDF* program. Let E be a proper term and let E reduce to F in an
NA-step. Then all labels of F are maximal.

Proof. Let select(E,G). Then G=>H and F is obtained by replacing all occurrences of G
in E by H. Let the rule by which G=>H be LHS=>RHS, and let G=g(t,tl,..,tm), m>=O,

IV-9 Labeled deterministic F*

and each ti a labeled term. Take any two labels 3 and in F. There are four cases.

Case 1. 13 and are both in E. Since E is proper, these labels are not proper initial
segments of each other.

Case 2. Only 13 is in E. Then, by the nature of LDF* rules, =cX'8 for some label 8 in
RHS. Since E is proper, 13 and (x are not proper initial segments of each other. If 3 a
then 3 and cc*8 are also not proper initial segments of each other.

Suppose 13=x. Since 13 occurs in E, E has a subterm f(13,sl,..,sn), n>=O. Since E is
proper, f(13,sl,..,sn)=G. But since all occurrences of G are replaced by H, 13 cannot occur
in F, as assumed. Hence this subsubcase cannot arise.

Case 3. Only 4 is in E. Same as case 2.

Case 4. None of 13 and is in E. Then, by definition of LDF* rules, 13=o*8 and =0x*e,
for some labels 8 and c in RHS. Since 8 and e are not proper initial segments of each
other, neither are 13 and 4. QED.

Lemma 9. Let P be an LDF* program. Let E be a proper term and let E reduce to F in an
NA-step. Let A and B be two subterms of F such that the outermost label of A and of B
is 13. Then, A=B.

Proof. Let select(E,G). Then G=>H and F is obtained by replacing all occurrences of G
in E by H. Let the rule by which G=>H be LHS=>RHS, and let the outermost label of G
be a. There are four cases.

Case 1. A, but not B, is a subterm of H. Let the label of A, and of B be 13. Since B is not
a subterm of H, there occurs B 1 in E, with label 13, such that B is the result of replacing
all occurrences of G in B I by H.

Since A is a subterm of H, 13 occurs in H. However, 13-a* since a, and 13 both occur in
E, and E is proper. Hence, 13 occurs in G. But then, since E is proper, B cannot properly
contain G. Hence B I =B, so B occurs in E.

Now 13 is also the label of A, 13P t*8, and A occurs in H. Hence A occurs in G, and so in
E. Since E is proper, A=B, as required.

Case 2. B, but not A, is a subterm of H. Then, as in the previous case, B occurs in E.

Hence A=B.

IV-10 Labeled deterministic F*

Case 3. Both A and B are subterms of H. Then A and B are also contained in G.
Suppose A is not, but B is. Then, 3=a*. Since B occurs in G, 13 also occurs in E.
Contradiction with E is proper. Similarly, for A in G, but not B. Suppose none of A and
B are in G. Without loss of generality assume A and B occur at distinct positions. Then,
there must be distinct labels e and) in RHS such that 3=a*e and 3=a*. But this implies
e=40 which, by the nature of labeled rules, is impossible. Hence both A and B are
contained in G, and hence in E. Since E is proper, A=B.

Case 4. None of A and B is a subterm of H. Hence, there exist terms A l and B 1 in E
such that A is obtained by replacing all occurrences of G in A 1 by H and B is obtained
from B 1 similarly. Since A H, B H, the outermost label of A1 and B 1 is also [3. Since E
is proper AI=B1. Hence A=B. QED.

Lemma 10. Let P be an LDF* program. Let a proper term E reduce to F in an NA-step.
Then F is a proper term.

Proof. By Lemmas 8 and 9, F is a proper term. QED.

Lemma 11. Let P be an LDF* program. Let EQ be a proper term. Let E0,E 1,..,Ek be an
NA-derivation. Then, in this reduction, an FL-pair is eliminated at most once.

Proof. By induction on length k of EO,E1,..,Ek. If k=O, then clear. Otherwise, assume
the theorem for EI,..,Ek. Let select(E0,G), G=>H and let El be obtained by replacing all
occurrences of G in EO by H. Let the outermost function symbol of G be f and its
outermost label be ot. Hence, <fa> is the pair eliminated in the reduction E0,E1.

If we can show that there is no term f(atl,..,tm) in E1,..,Ek, then, by induction
hypothesis, we can conclude that no FL-pair is eliminated more than once in EO,El,..,Ek.
To show this, it is sufficient to show that the label a never occurs in El,..,Ek. Since EQ is
proper, and <f,a> is eliminated, a does not occur in El. Let 4 be a label in E2,..,Ek.
Then, either 4=3 for some label 13 in El in which case t a. Otherwise, t=3*e for some
label 13 in El and label F. We show that it is not possible that [3*rE=a.

Case 1. 13 occurs in EQ. Since EQ is proper, 13 is not a proper initial segment of at. Hence,
it is not possible that [3*e=ot.

Case 2. 13 does not occur in EQ. Then, by the nature of LDF* rules, 03=a*8, for some
label 8. Hence, 3*e is longer than a, and so 3*e--a. QED.

Theorem 2. Minimality of LDF*. Let P be an LDF* program. Let EQ be a proper term.
Let EO,EI,..,Ek be a successful reduction. Then there exists a successful leftmost NA-

IV-11 Labeled deterministic 1P

derivation EO,F1,..,Fm such that m=<k.

Proof. Since EO,E1,..,Ek is a successful reduction, by reduction-completeness for F*,
Theorem 2, Section 11, there exists a successful N-reduction EO,G1,..,Gn. Let the E-set of
E,E1,..,Ek be SI and that of EO,G1,..,Gn be S2. Then, by Lemma 6, S2 is a subset of
S 1. By directionality of DF*, there exists a successful leftmost N-reduction EO,H 1,..,Hn.
By Lemma 7, its E-set is also S2.

By Theorem 1 above, there exists a successful leftmost NA-derivation EO,F1,..,Fm whose
E-set, S3, is a subset of S2. Hence S3 is a subset of S 1. By Lemma 11, the size of S3 is
m. The size of S I is a lower bound on the number of steps in EO,E 1,..,Ek. Hence m=<k.
QED.

IV.4 EXTENSION OF MINIMALITY RESULT TO NORMAL FORMS

We have shown that leftmost NA-derivations reduce proper terms to simpLified forms in a
minimum number of steps. It appears to be straightforward to extend this result to normal
forms.

E reduces to F in an NAR-step if select-r(E,p), p=>q and F is the result of replacing each
occurrence of p in E by q. Definitions of NAR-derivations and leftmost NAR-derivations
are the obvious ones. The proof that leftmost NAR-reductions reduce proper terms to
normal forms in a minimum number of steps appears to be very similar to the above
proof.

IV.5 DERIVED MINIMALITY OF DF*

Lemma 12. Let P be a DF* program and EO a term, where both P and EO are ordinary.
Let P* and EO* be, respectively, their labeled versions. Let EO-p>E1. Then there exists
El* such that EO*-p*>EI* and El* is a labeled version of El.

Proof. There exist G,H such that EI=EO[G/H]. Proceed by induction on length of EO. If
EO is a 0-ary function symbol g, then clear.

Otherwise, EOff(tl,..,tm), m>O. Then EO*=f*(a,tl*,..,tm*) where ,(f)=f* and for each i,
0=<i=<m, ti* is a labeled version of ti. Assume lemma for each of tl,..,tm.

Suppose G occurs in some ti in tl,..,tm, di=ti[G/H] and El=f(tl,..,ti-ldi,ti+l,..,tm). Then,
by induction hypothesis, there exists di* such that ti*->di* and di* is a labeled version of
di. Let E I*-f*(a,t*,..,ti-I*,di*,ti+l*,..,an*). Clearly, El* is a labeled version of El.

IV-12 Labeled deterministic F*

Suppose G=EO. Then there is a rule f(L1,..,Lm)=>RHS such that E0 matches f(Ll,..,Lm)
with some substitution 0 and H=RHSO. Let a labeled version of this rule be
f*(L,L1*,..,Lm*)=>RHS*. It is easily verified that EO* matches the head of this rule with

substitution 0* such that <Lx> is in tD* and for each pair <X,t> in 0, the pair <X,t*> is
in 0* where t* is a labeled version of t. It is also easily verified that RHIIS** is a labeled
version of RHSO. QED.

Theorem 3. Derived minimality for DF*. Let P be a DF* program and EQ a term,
where both P and EQ are ordinary. Let P* and EO* be, respectively, their labeled versions
such that EO* is proper. Let E0,E1,..,Ek be a successful reduction in P. Then there exists
a successful NA-derivation E*,FI *,..,Fp* in P* such that p=<k.

Proof. We can ensure that E0* is a labeled version of EQ which is proper, simply by
choosing distinct maximal labels for function symbols of EQ. By Lemma 12, there exists
a successful reduction EOE1*,..,Ek* such that for each i, Ei* is a labeled version of Ei.
Since P* is an LDF* program, and E0* is proper, by Theorem 2, there exists a successful
NA-derivation EQ*,F1*,..,Fp* such that p=<k. QED.

V. COMPILATION OF F* INTO HORN CLAUSES

V.1 INTRODUCTION

A very simple algorithm is described, which compiles F* programs into Horn clauses in
such a way that when SLD-resolution interprets them, it directly simulates the behavior of
select. This is accomplished by compiling each F* rule into a distinct Horn clause, and
combining in that clause, information about the logic of the rule, and information about
the control of select when interpreting that rule. Thus, a specialized interpreter is
produced for each rule.

If the F* program satisfies restriction (g) in Section 111.2, the clauses resulting from its
translation can be transformed to eliminate all redundant backtracking. If the program
also satisfies restriction (f), i.e. is in DF*, SLD-search trees automatically contain exactly
one branch. All the time, however, only pure clauses are produced.

The nature of logical variables is utilized to implement the assumption necessary for
minimality. This is that when a term is reduced, all copies of it are simultaneously
reduced. A logical variable has the property that when one occurrence of it in a term is
bound to some term, all occurrences of it are simultaneously bound to the same term.
Unfortunately, use must now be made of a metalogical feature (var), and an extra logical
feature (cut). This is the only impure aspect in the entire LOG(F) system. Consequently,
SLD-resolution, augmented with these features, computes NA-reductions.

LOG(F) is defined to be a logic programming system augmented with an F* compiler,
and the equality axiom X=X. A ready-made implementation of LOG(F) is obtained by
implementing the F* compiler in Prolog and using Prolog in place of SLD-resolution.
Due to its depth-first search strategy, Prolog may sometimes not be able to simplify terms,
even though select would. However, if P is in DF*, Prolog always simplifies terms
whenever select does.

In all of the following, except in Section V.6, Prolog clauses and Prolog are synonymous
with Horn clauses and SLD-resolution. Only in Section V.6 do they refer to the
programming language.

V.2 COMPILATION ALGORITHM

Let P be an F* program. The compilation of P into Prolog proceeds in two stages.

Stage 1. For each n-ary, n>=O, constructor symbol c in P, and where XI,..,Xn are distinct
variables, generate the clause:

V-2 Compilation of P* into Horn clauses

reduce(c(X 1,..,Xn),c(X 1,..,Xn))

Stage 2. Let f(Ll,..,Lm)=>RHS be a rule in P where f is an m-ary, m>=-O, non-
constructor function symbol and each of RI-S and Li ,.. ,Lm is a term, possibly containing
variables. For each such rule perform the following steps:

(a) Let Al,. .,Am be distinct Prolog variables none of which occur in the rule. If
Li is a variable let Qi be Ai=Li. If Li is c(Xl,..,Xn) where c is a constructor
symbol, and each Xi a variable, let Qi be reduce(Ai,c(X 1,..,Xn)).

(b) Let Out be a Prolog variable not occurring in the rule, and different from

A1l,..,Am. Generate the predication reduce(RI-S,Out).

(c) Generate the clause:

reduce(f(A 1,. .,Am),Out) :-Q1 ,..,Qm,reduce(RHS ,Out).

For example the F* rules:

append([] ,X)=>X
append([UIVI ,W)=>[Ulappend(V,W)]
intfrom(N)=>[Nintfrom(s(N))].
if(true,X,Y)=>X.
if(false,X,Y)=>Y.

are compiled into:

reduce(U,[]).
reduce([UI],UIV]).
reduce(true,true).
reduce(false,false).

reduce(append(A 1 ,A2),Out) :-reduce(A l1 I,A2=X ,reduce(X,Out).
reduce(append(A 1 ,A2),Out):-

reduce(Al1,[UI VJ),A2=W,reduce([U Iappend(V,W)] ,Out).
reduce(intfrom(N),Out):-reduce([Nlintfrom(s(N))] ,Out).
reduce(if(T,X,Y),Out):-reduce(T,true),reduce(X,Out).
reduce(if(T,X,Y),Out):-reduce(T,false),reduce(Y,Out).

It can be seen that where reduce(f(A1,..,Am),Out):-Ql,..,Qm,reduce(RH-S,Out) is the
translation of f(LI ,..,Lm)=>RHS, QI ,..,Qm represent the attempt to match some term

V-3 Compilation of F* into Horn clauses

f(tl,..,tm) with f(Ll,..,Lm). If these succeed, the match succeeds with some substitution
x. Now, reduce(RI-IS,Out) represents simultaneously, application of a to RHS, and

recursive simplification of RHSoa. The correctness of compilation algorithm is formally
proved in Section V.7.

In practice, in stage 2(a) if Li is a variable, then Ai in f(A1,..,Am) is replaced by Li, and
Ai=Li is not generated. This eliminates a procedure call, and so yields substantially faster
code. However, proofs of propositions below are easier to derive without this
optimization.

V.3 COMPUTING AND PRINTING NORMAL FORMS

If there is a method to compute simplified forms of terms, it can be applied repeatedly to
compute normal forms of terms. This is guaranteed by reduction-completeness for
normal forms, Theorem 4, Section H. In particular, for each m-ary constructor symbol we
can add the following rule:

nf(E,c(X 1,..,Xm)):-reduce(E,c(Tl ,..,Tm)),nf(Tl ,X 1),..,nf(Tm,Xm).

Now, to compute the normal form of a term E, we can execute nf(EX), where X is a
variable. The correctness of this rule for computing normal forms can easily be proved
from the arguments of Section V.7.

Clearly, computing normal forms is only sensible when they are finite. If they are not, we
can at least print finite portions of them as they are generated. For example, we can print
members of an infinite list as follows:

print-list(X):-reduce(X,[UIV]),write(U),write(' '),print-list(V).

V.4 OPTIMIZING RULES SATISFYING RESTRICTION (g)

Let P be an F* program and PC its compiled version. Let f(tl 1,..,tli,..,tlm)=>RHS1,
f(tn 1,..,tni,..,tnm)=>RHSn be the n rules defining fin P, and C1,..,Cn be, respectively,
their compiled versions. Let the rules satisfy restriction (g), Section I1.2. Then, if tli is a
variable, the ith literal in bodies of Cl,..,Cn will be, respectively, Ai=tli,..,Ai=tni, for
some variable Ai. Otherwise, the ith literals in Cl,..,Cn would be, respectively,

reduce(Ai,t 1 i),..,reduce(Ai,tni).

If tli is not a variable, the query reduce(f(al,..,ai,..,am),Z) may, due to backtracking,
cause evaluation of each of reduce(ai,tli),..,reduce(ai,tni). We can ensure that reduce is
called just once for ai by taking advantage of the fact that all reduce clauses have the

V-4 Compilation of F* into Horn clauses

same form. That is, we can collapse them all into the single clause:

reduce(f(A 1,..,Am),Z):-R 1,.. ,Rm,f(X 1 ,..,Xm)=>RHS,reduce(RHS,Z).

where X1,..,Xm are distinct variables not occurring in any of the clauses, and if tli is a
variable, Ri is Ai=Xi, otherwise Ri is reduce(AiXi). Now reduce would be called just

once for ai. Of course, the => rules now need to be included with the reduce clauses.
Thus Prolog execution can be considerably speeded up.

Furthermore, if P is a DF* program then f(X1,..,Xm)=>RHS will succeed at most once.
Hence, for any ground terms tl,..,tm, and variable Z, the search tree rooted at

reduce(f(tl,..,tm),Z) will contain exactly one branch. Thus, the reduce clauses would form
a deterministic logic program. For example, consider the DF* program:

append([],X)=>X.
append([UIV],W)=>[Ulappend(V,W)].

Its compiled version, excluding rules for constructor symbols, is:

reduce(append(A1,A2),Z):-reduce(Al,[]),A2=X,reduce(X,Z).
reduce(append(A1 ,A2),Z):-

reduce(Al,[UIV]),A2=W,reduce([Ulappend(V,W)],Out).

These two rules can be collapsed into a single one:

reduce(append(A I ,A2),Z):-
reduce(AI,Xl),A2=X2,append(XI,X2)=>RHS,reduce(RHS,Z).

Now, given the query reduce(append([],[2]),Z), an attempt would be made to simplify
[I] just once, and not twice, as with the original pair of reduce clauses. Also, since the

append rules are in DF*, the SLD-search tree rooted at reduce(append([1],[2]),Z)

contains exactly one branch.

V.5 COMPUTING FUNCTIONS EAGERLY IN F*

If a function is defined in F*, it is computed lazily. Often it is very desirable that some

functions, such as arithmetic functions, be computed eagerly. We show one way to

accomplish this.

A lazy function symbol is one which is defined in F*. An eager function symbol is one
which is defined in Prolog. Only right hand sides of F* rules can contain calls to eager

V-5 Compilation of F* into Horn clauses

functions. Let E be a subterm, possibly containing variables, of the right hand side of an
F* rule. Let the outermost function symbol of E be eager. Then E must not contain any
lazy function symbol. For example, where length is eager, and append is lazy, the term
length(append([I],[I])) must not appear in any F* rule.

Now, let LHS=>RHS be an F* rule, f an eager function, and f(tl,..,tn) a subterm, possibly
containing variables, of RHS. Let f be defined by an n+I ary predicate symbol
p(A1,..,An,A), such that A1 ,..,An are input positions and A the output position. Let
RHS I be the result of replacing f(tl,..,tn) in RHS by X, where X is a variable not
occurring in LHS=>RHS. Generate the condition p(tl,..,tnX), and add it to the
conditions generated in Stage 2 (a) of Section V.2. Of course, if tl,..,tn themselves
involve calls to eager functions, they must be treated similarly. For example, let multiple
be an eager function defined in Prolog as follows:

multiple(A,B,true):-O is A mod B.
multiple(A,B,false):-not(O is A mod B).

Now the rule:

filter(A,[UIV])=>if(multiple(U,A),filter(A,V),[Ulfilter(A,V)]).

is compiled into:

reduce(filter(A,X),Z):-
reduce(X,[UIVI),
multiple(U,A,T),
reduce(if(T,filter(A,V),[Ulfilter(A,V)]),Z).

However, some care still needs to be exercised. For example, where zerop and / are eager
functions, defined in Prolog by, respectively, zerop and div, the rule:

f(X)=>if(zerop(X),[X], I/X]).

will be compiled into:

reduce(f(X),Z):-zerop(X,T),div(1,X,A),reduce(if(T,[X],[A]),Z).

Now, if X is 0, the call to div will cause an unintended division by 0. But one can rewrite
the above rule as:

f(X)=>if(zerop(X),[X],h(X)).

V-6 Compilation of F* into Horn clauses

h(X)=>[1/X].

V.6 COMPILING LDF* PROGRAMS

We now show how to represent labeled terms in Prolog, and compile LDF* programs

into Prolog in such a way that NA-steps can be performed efficiently. The main idea is
that labels can be represented by logical variables. These have the property that if one

occurrence of a variable in term E is bound to term F, all occurrences of the variable in E

are simultaneously bound to F.

Let E be a proper term and let E reduce to F in an NA-step. Then there is a subterm G of
E such that G=>H, and F is obtained by replacing all occurrences of G in E by H. Note

that each of G,H,F is proper. Let E contain the labels al,..,(xn. Let V1,..,Vn be distinct
variables and E* the result of replacing for each i, all occurrences of oXi in E by Vi. Then

E* is a Prolog representation of E. Similarly, let G*,H*,F* be Prolog representations of
G,H,F respectively such that H* and E* do not have any variables in common. Then

G*=f(V,tl,..,tm) where V is a variable. If we now bind V to H*, all occurrences of V in

E* are bound to H*. Let the result be FI*.

Now, before attempting to match a term with a non-variable term, we take the precaution

of checking whether its label is already bound to some term. If so, we attempt to match
this term with the non-variable term. Otherwise, we proceed as usual. Thus, after V has

been bound to H*, if another occurrence of G* is to be matched with some term, we
attempt to match H* with it.

At a later stage it is possible that the label of H* itself be bound to a term. Thus, before

matching a term, it may be necessary to "dereference" its label a number of times. It is
not unreasonable to assume that the cost of dereferencing is small compared to that of
reduction. Thus, we can work with FI* instead of F*, so replacement of all occurrences
of a term is implemented efficiently. Moreover, F* can be obtained from Fl* by

dereferencing. The algorithm for compiling LDF* programs can be found in [Narain

1988]. In practice, DF* programs can be compiled directly into reduce clauses with
labels, without first transforming them into LDF* programs. The appropriate algorithm

can easily be worked out.

It will be recognized that our scheme for implementing NA-derivations is exactly the
graph-reduction scheme with indirection nodes described in [Turner 19791 and

[O'Donnell 1982]. However, in our case it is possible to ensure that the length of the

dereferencing chain is exactly one. Details can be obtained in [Narain 19881. For

example, where nil is a zero-ary constructor symbol, let P be the following DF* program:

V-7 Compilation of F* into Horn clauses

merge(nil,nil)=>nil.
double(X)=>merge(X,X).
h=>d.

This is compiled into:

(1) reduce(merge(V,A 1 ,A2),Z) :-not var(V),reduce(V,Z),!.
(2) reduce(double(V,A 1),Z):-not var(V),reduce(V,Z),!.
(3) reduce(h(V),Z):-not var(V),reduce(V,Z),!.

(4) reduce(nil(N),nil(N)).
(5) reduce(merge(Z,A1,A2),Z):-

reduce(Al,nil(N1)),reduce(A2,nil(N2)),reduce(nil(N3),Z).
(6) reduce(double(Z,A 1),Z):-reduce(merge(N,A 1 ,A 1),Z).
(7) reduce(h(Z),Z):-reduce(d(D),Z).

Consider the query reduce(double(A,h(B)),Z), which has as descendant
reduce(merge(N,h(B),h(B)),Z). Suppose the first call, reduce(h(B),nil(N1)), in (5)
succeeds, but only after a long and complicated deduction. Then B is bound to nil(N 1).
Now, due to (3), the second call, reduce(h(B),nil(N2)), in (5) will terminate in just three
inference steps. The cut (!) will prevent (7) from being tried all over again. Also note
that of these three inference steps, only one is a dereferencing step. The number of these
steps is constant, regardless of the function definitions.

V.7 CORRECTNESS OF F* COMPILATION ALGORITHM

Lemma 1. Let P be an F* program. If:

(1) E0=ftl,..,ti,..,tm), and
(2) Ek=f(sl,..,si,..,sm), and

(3) si is simplified, and
(4) EO,..,Ek, k>=O, is an N-reduction such that for no i, Ei=>Ei+1.

Then there is a successful N-reduction ti,..,si of length less than or equal to the length k of

EO,E1,..,Ek.

Proof: By Lemma 8, Section III. QED.

Lemma 2. Let P be an F* program, and PC its compiled version. Let A be a ground term
and B a term, possibly containing variables, such that reduce(A,B) succeeds, in the sense

of SLD-resolution, with answer substitution . Then Ba is ground.

V-8 Compilation of F* into Horn clauses

Proof: By induction on length n of successful SLD-derivation reduce(A,B),G1,..,Gn=C.

QED.

Lemma 3. Let P be an F* program and PC its compiled version. Let A and B be ground
terms such that reduce(A,B) succeeds. Let D be a term, possibly containing variables,

such that for some substitution a, Dcx=B. Then reduce(A,D) succeeds with answer

substitution a.

Proof: By induction on length n of successful SLD-derivation starting at reduce(A,B).

QED.

Lemma 4. Let P be an F* program. Let PC be the compiled version of P. Let EO,..,En be
a successful N-reduction. Then reduce(EOEn) succeeds in the presence of PC.

Plan of Proof: By induction on length of successful N-reduction EO,..,En. We show that

there is some Ej, j>O, in EO,..,En such that an SLD-derivation of reduce(EO,En) contains
the goal reduce(Ej,En). Since Ej,..,En is also a successful N-reduction, by induction

hypothesis, reduce(EjEn) succeeds. Hence reduce(EO,En) succeeds.

Proof: By induction on length n of successful reduction EO,..,En. If n--O then EO is

already simplified. In particular, EO=c(tl,..,tm) where c is an m-ary constructor symbol,

m>=O, and tl,..,tm are terms. There is a clause in PC reduce(c(Xl,..,Xm),c(X1,..,Xm))
where each Xi is a variable. Clearly reduce(EO,EO) succeeds.

Let n>O and EO=f(tl,..,tm), f not a constructor symbol, each ti a term and m>--O. Assume

theorem holds for all successful reductions of length less than n.

Since EO is not simplified, the N-reduction is of the form EO,..,Ek- 1 Ek,..,En, O<k=<n,

such that Ek-l=>Ek, but for no i, 0=<i<k-1, Ei=>Ei+l. Hence, Ek-l=f(sl,..,sm) for some

terms s 1,..,sm. Since Ek- 1 =>Ek, there is some rule f(L 1,..,Lm)=>RHS such that Ek- 1

matches f(Ll,..,Lm) with some substitution ca and Ek=RHSa. Since Ll,..,Lm do not share
any variables, a is the union of ol,..,om such that for each Li in Ll,..,Lm, si matches Li

with substitution ai.

For each i, if Li is not a variable, then since si matches Li, si is in simplified form. For

such i, there is, by Lemma 1, a successful N-reduction ti,..,si of length less than or equal

to k-1.

The rule f(Ll,..,Lm)=>RHS is compiled into the Horn clause

reduce(f(X ,..,Xm),Z):- Qu{reduce(RHS,Z))

V-9 Compilation of F* into Hom clauses

in accordance with the compilation rules stated above. This clause is contained in PC.

Consider the query reduce(EO,En), i.e. reduce(f(tl,..,tm),En). It unifies with
reduce(f(Xl,..,Xm),En) with m.g.u. T=(<Xl,tl>,..,<Xm,tm>,<ZEn>) and its immediate
descendant is (Qu(reduce(RHS,Z)))T. Since RHS does not contain any of the Xi, this is

QTu[reduce(RHS,En)).

Let Ql ,..,Qm be the members of Q. Consider some Qi. If Qi is Xi=Li, then Qir=(ti=Li)
which succeeds with answer substitution ([<Li,ti>). Of course, ti matches Li, so

[<Li,ti>) =0'i.

Otherwise, Qi=reduce(Xi,Li), so QiT--reduce(tiLi). Since there is a successful N-
reduction ti,..,si of length less than or equal to k-i, by induction hypothesis, reduce(ti,si)
succeeds. Since Liai=si, by Lemma 3, reduce(ti,Li) also succeeds with answer

substitution ai.

By repeating the same argument for each Qi, we see that an SLD-derivation starting at

reduce(EO,En) contains reduce(RHSal,..,crm,En) as a member. Since a is the union of
ol,..,o and no variable is defined in more than one oi in al1... m,
RHSol ,..,om=RHSo. But RHSa=Ek. Hence the SLD-derivation starting at
reduce(EO,En) contains reduce(Ek,En). Since the length of the successful reduction

Ek,..,En is less than n, by induction hypothesis, reduce(EkEn) succeeds. Thus, the query

reduce(EO,En) succeeds. QED.

Lemma 5. Let P be an F* program. Let PC be the compiled version of P. Let EO and En

be terms such that reduce(EO,En) succeeds in the presence of PC. Then there is a

successful N-reduction EO,..,En.

Plan of Proof: By induction on length of successful SLD-derivation reduce(E0,En),..,O.
We show that there is some goal reduce(Ej,En), j>O, in this derivation such that there is

an N-reduction EO,..,Ej. Since reduce(Ej,En) succeeds, by induction hypothesis, there is a

successful N-reduction Ej,..,En. So there is a successful N-reduction EO,..,Ej,..,En.

Proof: By induction on length n of successful SD-derivation starting at reduce(EO,En).
If n=1 then there is a clause reduce(c(Xl,..,Xm),c(Xl,..,Xm)) in PC such that
reduce(EO,En) unifies with the head of this clause. Clearly, then, EO=En, En is simplified

and the required N-reduction is simply EO.

Let n>O. Assume lemma for all successful derivations of length less than n. Assume

EO=f(tl ,..,tm) for some non-constructor function symbol f and terms tl,..,tm. Since
reduce(EO,En) succeeds there is a clause in PC:

V-1O Compilation of F* into Horn clauses

reduce(f(Xl,..,Xm),Z):-Qu.reduce(RHS,Z)}

such that it is the compilation of a rule f(Ll,..,Lm)=>RHS in P. Moreover,
reduce(f(tl,..,tm),En) unifies with the head of the above clause with m.g.u.
T= { <X 1,t I >,..,<Xm,tm>,<Z,En>) and QT U (reduce(RHS,Z)) has a successful
derivation of length n-i. Also, RHSt=RHS and Z =En.

If Q is empty, m--O. So, by restriction (e) RHS is ground. By induction hypothesis there is
a successful N-reduction RHS,..,En. EO matches f(Ll,..,Lm) and so EO=->RHS. Hence
EO,RHS,..,En is a successful N-reduction.

Suppose Q is non-empty. Let Ql,..,Qm be the members of Q. Consider Qi. If Qi=(Xi=Li)

then ti unifies with Li with substitution oi= (<Li,ti>}. Construct the singleton sequence
f(tl ...ti....tn). This sequence is an N-reduction.

If Qi=reduce(Xi,Li) then Li=c(U1,..,Uk) for some constructor symbol c and variables

Ul,..,Uk. Also Qir--reduce(ti,Li). Clearly, reduce(tiLi) succeeds. Let the answer
substitution be oi. By Lemma 2, Lioi is ground. Then reduce(tiLiai) also succeeds. The
successful derivation of reduce(tiLiai) is the same as that of reduce(ti,Li) with Li
replaced by Liai. So, the length of this derivation is also less than n. By induction
hypothesis, there is a successful N-reduction ti,..,Lioi. By Lemma 4 of Section II, the
sequence f(tl,..,ti,..,tm),..,f(tl,..,Lioi,..,tm) is an N-reduction.

Hence we obtain the N-reductions f(tl,..,tm),..,f(Llal,..,tm) and
f(L I c l,t2,..,tm),..,f(L I o1,L2a2,..,sm) and..
f(L1 al,L2o2,..,tm),..,f(Llal,L2'2,..,Lmom). The concatenation of these reductions is
itself an N-reduction. Since Ll,..,Lm do not share variables, f(Llal,..,Lmam) matches
f(Ll,..,Lm) with a substitution which is the union of al,..,om. Let a be this union. Hence
f(Ll l,..,Lmom)=>RHSa. Since all the variables of RHS are in L1,..,Lm and for each
oi, Lioi is ground, RHSa is ground.

The predication reduce(RHSyEn) succeeds and the length of the associated successful

derivation is less than n. By induction hypothesis, there is a successful N-reduction
RHSa,..,En. Hence there is a successful N-reduction

f(tl,..,tn),..,f(Llal,..,Lmam),RHSa,..,En. QED.

Theorem 1. The correctness of the compilation of F*. Let P be an F* program and PC
be its compilation. Let EO and En be ground terms. Then there is a successful N-reduction

beginning with EO and ending with En iff PCI-reduce(EO,En).

Proof: Lemmas 4 and 5 state, respectively, the if and only if parts of the theorem. QED.

VI. PROGRAMMING IN LOG(F)

VI.A INTRODUCTION

This section describes seven examples of programming in LOG(F). The first illustrates
non-determinism of LOG(F), and usefulness of lazy evaluation even when manipulating
finite data structures. The second shows how useful cases of the rule of substitution of
equals for equals can be implemented. The third obtains a new proof of confluence of
combinatory logic. The fourth shows how a pair of communicating processes can be
simulated. The fifth illustrates the power of NA-derivations, and manipulation of infinite
numerical structures. The sixth illustrates manipulation of infinite graphical structures.
The seventh compares LOG(F) with the system of Tamaki [1984]. In each case, clauses
listed are those obtained after performing optimizations discussed in previous sections.
Finally, Section VI.9 compares performance of LOG(F) with that of Prolog.

VI.2 NON-DETERMINISM IN F*

As discussed in Section I, permutations of lists can be computed by the following F*
program:

perm([])=>[].
perm([UIV])=>insert(U,perm(V)).
insert(U,X)=>[U IX].
insert(U,[AIB])=>[Alinsert(U,B)].

This is compiled, and optimized into:

reduce(],[j]).
reduce([AIB],[AIB]).

reduce(insert(A,B),[AIB]).
reduce(insert(A,B),[Clinsert(A,D)]):-reduce(B,[CIDI).
reduce(penn(A),B):-reduce(A,C),perm(C)=>D,reduce(D,B).

perm([])=>[].
perm([AIB])=>insert(A,perm(B)).

Note that some => rules survive in the compiled version. This is due to the method,
discussed in Section V.4, of compiling F* programs satisfying restriction (g). If we now
type reduce(perm([1,2,3]),Z), we obtain Z=[I perm([2,3])], Z=[21insert(1,perm([3]))],
Z=[31insert(1,insert(2,perm([1)))]. However, if we define:

VI-2 Programming in LOG(F)

nakejlist(X,[]):-reduce(X,[]).
makejlist(X,[UIV]):-reduce(X,[UIBI),makelist(B ,V).

and then type make list(perm([1,2,3]),Z), we obtain Z=[1,2,3],..,Z=1[3,2,1I.

The above program can be used to implement a very efficient solution to the N-queens

problem which is to place N queens on an NxN chess board so that no two queens attack
each other. It is easily seen that each queen must be in a distinct row and column, so that
candidates for solutions can be represented by permutations of the list [1,2,..,N]. The
position of the ith queen in a permutation p is [i,q] where q is is the ith element of q. The
problem now reduces to generating all permutations of [1,2,..,N] and testing whether they
are safe, or represent a solution.

Lazy evaluation guarantees that permutations are tested as soon as they are generated. If
it is determined that [A1,..,Am], m=<N is unsafe then no permutation with [A1,..,Am] as
initial segment is generated. This yields a drastic pruning of the search space. The
program is:

if(trueX,Y)=>X.
if(false,X,Y)=>Y.
queens(X)=>safe(perm(X)).
safe([])=>[].
safe([UIV])=>[Ulsafe(nodiagonal(U,V,I))].
nodiagonal(U,],N)=>[].

nodiagonal(U,[AIB],N)=>if(noattack(U,A,N),[Alnodiagonal(U,B,N+ 1)],none).
noattack(U,A,N)=>neg(equal(abs(U-A),N)).

This is compiled into:

reduce([],[]).
reduce([UV],[UIV]).
reduce(true,true).

reduce(false,false).

reduce(queens(A),B):-queens(A)=>C,reduce(C,B).
reduce(safe(A),B):-reduce(A,C),safe(C)=>D,reduce(D,B).
reduce(if(A,B,C),D):-reduce(A,E),if(E,B,C)=>F,reduce(F,D).
reduce(noattack(A,B,C),D):-noattack(A,B,C)=>E,reduce(E,D).

reduce(nodiagonal(A,B,C),D):-reduce(B,E),nodiagonal(A,E,C)=>F,reduce(F,D).

queens(A)=>safe(perm(A)).

VI-3 Programming in LOG(F)

safe([])=>[].
safe([AIB])=>[Alsafe(nodiagonal(A,B, 1))].
if(true,A,B)=>A.
if(false,A,B)=>B.
nodiagonal(A,[],B)=>[].
nodiagonal(A,[BIC],D)=>

if(noattack(A,B,D),[B Inodiagonal(A,C,E)] ,none) :-E is D+ 1.
noattack(A,B,C)=>D:-E is A-B,abs(E,F),equal(F,C,G),neg(GD).

The eager functions are defined in Prolog:

abs(X,X):-X>=O.
abs(X,Y):-X<O,Y is -X.
neg(true,false).
neg(false,true).
equal(A,A,true).
equal(A,B,false):-not A=B.
lessthan(U,A,true):-U<A.
lessthan(U,A,false):-U>=A.

If we now type makejlist(queens([1,2,3,4]),Z), we obtain Z=[2,4,1,3] and Z=[3,1,4,2].

VI.3 IMPLEMENTING SUBSTITUTION OF EQUALS FOR EQUALS

If a DF* program is interpreted as an equality theory, reduce clauses can be thought of as
implementing an equality theory in Prolog with the restriction that it be used only for
simplification of terms. Now, given a clause of the form p(c(X1,..,Xm)):-Body, where c
is a constructor symbol, we can add another clause stating a rule of substitution of equals:

p(X):-reduce(X,c(Xl ,..,Xm)),p(c(Xl,..,Xm)).

Now, even when a term E is not of the form c(Xl,..,Xm), p can still be inferred for E,
provided E is reducible to a term of the form c(Xl,..,Xm). For example, from:

married(X):-spouse(X,Y).
spouse(scott,a).

one can infer married(scott). One can now add the clause:

maried(X):-reduce(X,Y),married(Y).

VI-4 Programming in LOG(F)

An equality theory is:

author(waverley)=>author(ivanhoe).
author(ivanhoe)=>scott.

The reduce clauses for the last two => rules are:

reduce(scott,scott).
reduce(ivanhoe,ivanhoe).
reduce(waverley,waverley).

reduce(author(X),Z):-reduce(X,waverley),reduce(author(ivanhoe),Z).
reduce(author(X),Z):-reduce(X,ivanhoe),reduce(scott,Z).

Here scott, waverley, and ivanhoe are constructor symbols. Now one can infer, in Prolog,

married(author(waverley)), i.e. the result of substituting author(waverley) for scott in
married(scott).

VI.4 COMBINATORY LOGIC

A new proof is obtained of the theorem that the SKI calculus is confluent. Following the

ideas of Ait-Kaci & Nasr [1986], SKI reduction rules can be expressed as a DF*
program:

apply(k,X)=>klI-
apply(kl(X),Y)=>X.
apply(s,F)=>s 1(F).
apply(s 1(F),G)=>s2(F,G).
apply(s2(F,G),X)=>apply(apply(F,X),apply(G,X)).

Here k,skl,sl,s2 are constructor symbols, and apply a non-constructor symbol. From
confluence of DF*, it follows that the SKI calculus is also confluent. These rules are
translated into the following reduce clauses:

reduce(s,s).

reduce(k,k).
reduce(k 1 (X),k 1(X)).
reduce(sl(X),sl(X)).
reduce(s2(XY),s2(X,Y)).

reduce(apply(A,B),Z):-reduce(A,k),reduce(k I (B),Z).

VI-5 Programming in LOG(F)

reduce(apply(A,B),Z):-reduce(A,kl (D)),reduce(D,Z).
reduce(apply(A,B),Z):-reduce(A,s),reduce(s 1 (B),Z).
reduce(apply(A,B),Z):-reduce(A,s (C)),reduce(s2(C,B),Z).

reduce(apply(A,B),Z):-
reduce(A,s2(D,E)),reduce(apply(apply(D,B),apply(E,B)),Z).

These clauses can be used to contemplate higher-order programming in LOG(F).

VI.5 TWO WAY COMMUNICATION

This example models communcation between two users, each of whom types a stream of
tokens on his screen. Each token is of the form [A] or [send,M] in which case M appears
on both screens. The communication is modeled by:

extract messages([[AIXJ)=>extract messages(X).
extractmessages([[send,M] IX])=>[Mlextract messages(X)].

screen 1 =>fair merge(key 1,extract-messages(key2)).
screen2=>fair-merge(key2,extract messages(key 1)).

Here send, [] and I are constructor symbols. We assume there exists a function fairmerge
which takes as input two streams and interleaves their tokens into an output stream. If two

tokens appear in some order in an input, then they appear in the same order in the output.
Finally, fair-merge consumes each input at the rate at which it is produced.

Note that the second extract-messages rule has a left hand side of depth greater than two,
so, strictly speaking, it is not an F* rule. However, it can be expressed in F* as follows:

extractmessages([AIX])=>g(A,X).
g([UIV],X)=>h(U,VX).
h(send,V,X)=>[Vlextract messages(X)I.

Here g and h are auxiliary function symbols. Assuming that key I and key2 are streams
of tokens typed by, respectively, the first and second user, the term screenl will reduce to
the stream of tokens appearing on the first user's screen. Similarly for screen2. The
reduce clauses are:

reduce([],[]).

reduce([UlVi,[UIV]).
reduce(send,send).

VI-6 Programming in LOG(F)

reduce(extract-messages(A),B):-
reduce(A,[CID]),reduce(C,[E]),reduce(extractmessages(D),B).

reduce(extracLmessages(A),[Blextract messages(C)]):-
reduce(A,[DIC]), reduce(D,[EIF]), reduce(E,send), reduce(F,[B]).

reduce(screen 1 ,A):-reduce(fair..merge(key 1 ,extract.messages(key2)),A).
reduce(screen2,A):-reduce(fair-merge(key2,extracLmessages(keyl)),A).

VI.6 HAMMING'S PROBLEM

The problem, described in [Dijkstra 1976], is to generate, in increasing order, all those
numbers which are divisible by no primes other than 2,3 or 5. Dijkstra states that an
equivalent problem is to generate the sequence of numbers, in ascending order, defined
by the following axioms:

(a) 1 is in the sequence
(b) If x is in the sequence, then so are 2*x, 3*x and 5*x.
(c) The sequence contains no values except those on account of (a) and (b).

These axioms can be expressed by the following DF* program:

hamming=>hammingaux([llhamming]).

hammingaux(X)=>
merge(timeslist(2,X),merge(times-list(3,X),timesjlist(5,X))).

merge([UIV] ,[AIB])=>if(U<A,[Ulmerge(V,[AIB])] ,merge-aux(U,V ,A,B)).
merge-aux(U,V,A,B)=>if(equal(U,A),[Ulmerge(V,B)],[Almerge([UIV],B)]).

times_list(N,[])=>[].
times list(N,[UIV])=>[U*Nltimesjlist(N,V)].

Function timeslist multiplies each element of its input list by a fixed number. Function
merge takes two lists in ascending order and merges their elements in increasing order.
Functions hamming and hamming-aux are implementations of axioms (a),(b),(c).

This program illustrates the power of NA-derivations. The definition of hamming.aux
contains three occurrences of X on the right hand side. If care is taken that whenever the
term at one occurrence of X is reduced, terms at the other two occurrences of X are also
reduced, the list hamming is produced with little overhead. If not, then the overhead
increases exponentially. This can be felt by comparing the speed with which elements of
hamming are printed on the screen in the two cases. The labeled version of this program
is compiled into the following reduce clauses:

V1-7 Programming in LOG(F)

reduce(hammning(A),B):-not var(A),B=A,!.
reduce(hammingaux(A,B),C):-not var(A),C=A,!.
reduce(merge(A,B,C),D):-not var(A),D=A,!.
reduce(mergeaux(A,B,C,D,E),F):-not var(A),F=A,!.
reduce(timesjist(A,B,C),D): -not var(A),D=A,!.
reduce(if(A,B,C,D),E):-not var(A),E=A,!.

reduce([],[]).
reduce([AIB],[AIB]).
reduce(true,true).
reduce(false,false).

reduce(hamming(A),A) :-hamning(B)=>C,reduce(C,A).
reduce(hamnmingaux(A,B),A) :-hammingaux(C,B)=>D,reduce(D,A).
reduce(merge(A,B,C),A):

reduce(B ,D),reduce(C,E),merge(F,D,E)=>G,reduce(G ,A).
reduce(mergeaux(A,B,C,DE),A) :-merge-aux(F,B ,C,D,E)=>G,reduce (G,A).
reduce(timesjist(A,B ,C),A):-reduce(C,D),timesj-ist(E,B,D)=>F,reduce(F,A).
reduce(if(A,B ,C,D),A) :-reduce(B,E),if(FE,C,D)=>Greduce(G ,A).

hamming(A)=>[I hammingaux(B,hamming(C))].
hammingaux(A,B)=>

merge(C,timesjlist(D,2,B),

merge (A, [B IC],[DIE])=>
if(F,G,[Blmerge(H,C,[DIE])] ,merge-..aux(I,B,C,D,E)):-less..than(B,D,G).

mergeaux(A,B,C,D,E)=>
if(F,G,[B Imerge(H,C,E)] ,[Dlmerge(I,[B IC] ,E)]):-equal(B,D,G).

timesjist(A,B ,[])=>IJ.
timesjist(A,B,[CIDJ)=>[Eltimesjist(F,B,D)]:-E is C*B.
if(A,true,B,C)=>B.
if(A,false,B,C)=>C.

Definitions of the eager functions less-than and equal are as in Section VI.2. If we now
type printjlist(hamming(j), we obtain 1,2,3,4,5,6,8,9,10,12,...

VI.7 INFINITE GRAPHICAL STRUCTURES.

Henderson [19821 has shown how to use functional programming for defining and
manipulating graphical structures. In particular, he shows how to construct Square Limit,
an Escher woodcut. We use Henderson's building blocks to tile the x-y plane in an

VI-8 Programming in LOG(F)

interesting way. A picture is represented by a list of vectors, each of the form v(A,B)--
v(X,Y), where A,BX,Y are real numbers. Transformations on pictures, such as
composition, translation, scaling, or rotation (about the origin) are defined as follows:

union([],X)=>X.
union([FXIRX],Y)=>[FXlunion(Y,RX)].

rotate([],j=>[].
rotate([v(X,Y)--v(A,B)IL],Theta)=>
[v(X*cos(Theta)-Y*sin(Theta),X*sin(Theta)+Y*cos(Theta))--
v(A*cos(Theta)-B*sin(Theta),A*sin(Theta)+B*cos(Theta))Irotate(L,Theta)].

translate([],_,j=>[].
translate([v(X,Y)--v(A,B)IL],Dx,Dy)=>

[v(X+Dx,Y+Dy)--v(A+Dx,B+Dy)ltranslate(L,Dx,Dy)].
scale([],j=>[].
scale([v(X,Y)--v(A,B)IL],Kx,Ky)=>

[v(X*Kx,Y*Ky)--v(A*Kx,B*Ky)lscale(L,Kx,Ky)].

The basic pictures are p,q,rs, drawn in a 36x36 grid, and shown in order in the top row in
Figure 1. (The vectors can be found, not unfortunately, in Henderson's paper, but in
[Robinson & Green 1987]). These are combined by quartet into t, shown in the second
row. The third and fourth rows show, respectively, block l(t) and block2(t), the two basic
144x72 rectangles. row(Block,O) repeats Block, infinitely often, at intervals of 144 units,
in the x and -x directions. alt-rows(Row,O) repeats a row infinitely often, at intervals of
144 units, in the y and -y directions. mosaic(Blockl,Block2) computes rows of BlockI
and Block2, alternates these, and then composes these to tile the x-y plane, Figure 2. The
program is:

rotpos(X)=>translate(rotate(translate(X,-72,-72),- 1.57),72,O).
rotneg(X)=>translate(rotate(translate(X,-72,-72), 1.57),0,72).

block 1 (X)=>union(X,translate(rot-neg(X),72,0)).
block2(X)=>
union(rotpos(X),

translate(rotate(translate(rot-pos(X),-72,O),- 1.57),72,0)).

row(Block,N)=>union(translate(Block, 144*N,O),

union(translate(Block,- I 44*N,O),row(Block,N+ 1))).

altrows(Row,N)=>union(translate(Row,O, 144*N),

VI-9 Programming in LOG(F)

union(translate(Row,O,- 144*N),alt _rows(Row,N+ 1))).

mosaic(Blockl1,Block2)=>union(altjrows(row(Blockl1,O),O),
traslate(altjows(row(Block2,O),O),O,72)).

beside(A,B)=>union(A,translate(B ,36,O)).
above(A,B)=>union(A,translate(B,O,36)).
quartet(Pl1 P2,P3,P4)=>above(beside(P3,P4),beside(P 1,P2)).

t=>quartet(p,q,rs).

P=>[..
q=>[I.]
r-->[..].
s=>[..

Note that mosaic computes an infinite row, an infinite number of times. However,
reduction-completeness of DF* precludes infinite runaway. Vectors are displayed as they
are generated. The above program is compiled into:

reduce(rotate(A,B),[]) :- reduce(A,[]).

reduce(A,[HIGJ), reduce(H,I--J), reduce(I,v(KL)),
reduce(J~vMN), cos(B,O), P is K*O, sin(B,Q),
R is L*Q, C is P-R, sin(B,S), T is K*S,
cos(B,U), V is L*U, D is T+V, cos(B,W),
X is M*W, sin(B,Y), Z is N*Y, E is X-Z,
sin(B,AI1), B I is M*AI1, cos(B,C1), Dl is N*C1, F is B 1+D1.

reduce(translate(A,B,C),[l):-reduce(A,[]).
reduce(translate(A,B,C),[v(D,E)--v(F,G)Itranslate(H,B,C)])

reduce(A,[IIHD, reduce(IJ--K), reduce(J,v(L,M)),
reduce(K,v(N,O)), D is L+B, E is M+C,
F is N+B, G is O+C.

reduce(scale(A,B,CQij) :- reduce(A,D).
reduce(scale(A,B,C),[v(D,E)--v(F,G)Iscale(H,B,C)])

reduce(A,[IIH]), reduce(IJ--K), reduce(J,v(L,M)),
reduce(K,v(N,O)), D is L*B, E is M*C, F is N*B, G is O*C.

reduce(true,true).
reduce(false,false).

reduceffl,[]).
reduce([AIBj,[AIBJ).

VI-lO Programming in LOGOF

reduce(A--B,A--B).
reduce(v(A,B),v(A,B)).

reduce(p,A) p=>B, reduce(B,A).
reduce(q,A) q=>B, reduce(B,A).
reduce(r,A) r-->B, reduce(B,A).
reduce(s,A): s=>B, reduce(B,A).
reduce(t,A) :-t=>B, reduce(B,A).
reduce(block 1 (A),B) block 1 (A)=>C, reduce(C,B).
reduce(block2(A),B) block2(A)=>C, reduce(C,B).
reduce(cycle(A),B) :-cycle(A)=>C, reduce(C,B).
reduce(rot(A),B) :-rot(A)=>C, reduce(C,B).
reduce(rot..neg(A),B) rot-neg(A)=>C, reduce(C,B).
reduce(rot-pos(A),B) rot~pos(A)=>C, reduce(C,B).
reduce(above 1 (A,B),C) :-above 1 (A,B)=>D, reduce(D,C).
reduce(altjrows(A,B),C) :-alt-rows(A,B)=>D, reduce(D,C).
reduce(besidel (A,B),C): besidel (A,B)=>D, reduce(D,C).
reduce~mosaic(A,B),C) :-mosaic(A,B)=>D, reduce(D,C).
reduce(row(A,B),C) :-row(A,B)=>D, reduce(D,C).
reduce(union(A,B),C) :-reduce(AD), union(D,B)=>E, reduce(E,C).
reduce(quartet(A,B,C,D),E) :-quartet(A,B,C,D)=>F, reduce(FE).

union([],A)=>A.
union([AIB]C)=>[AIunion(C,B)].
rot.pos(A)=>translate(rotate(translate(A,-72,-72),- 1.57),72,O).
rot-neg(A)=>translate(rotate(translate(A,-72,-72), 1.57),O,72).
blocki1 (A)=>union(A,translate(rot-neg(A),72,O)).
block2(A)=>union(rot-pos(A),

translate(rotate(traslate(roLpos(A),-72,O),- 1.57),72,O)).
row(A,B)=>union(translate(A,C,O),

union(translate(A,D,O),row(A,E)))
C is 144*B, D is-144*B, E is B+1.

VIii1 Programming in LOG(F)

alt rows(A ,B)=>union(translate(A,O,C),union(translate(A,O,D),alt rows(A ,E))):
C is 144*B, D is-144*B, E is B+1.

mosaic(A,B)=>union(altjows(row(A,O),O),

translate(alt-rows(row(B ,O),O),O,72)).
beside(A,B)=>union(A,translate(B,36,O)).
above(A,B)=>union(A,translate(B,O,36)).
quartet(A,B,C,D)=>above(beside(C,D),beside(A,B)).
rot(A)=>rotate(A, 1. 57).
cycle(A)=>union(A ,union(rot(A),union(rot(rot(A)),rot(rot(rot(A)))))).
t=>quartet(p,q,r,s).

VI.8 FIRST TWO ELEMENTS OF A LIST

Tamaki [1984] shows how to compile restricted equality theories, expressed by a
reducibility predicate =>, into Horn clauses with a small search space. For example, the
clauses:

int(N)=>[Nlint(N+1)].
first2([X,YIZ] ,[X,Y]).

are compiled into:

x=>x
int(N)=>[NIZ] :-int(N+ 1)=>Z
first2([X,YIZ] ,[X,Y])

Now the query int(1)=>X,first2(X,Y) succeeds with answer substitution X=[1,2lint(3)1,
Y=[1,2]. However, it succeeds with infinitely many other distinct answer substitutions,
e.g. X=[1l,2,3lint(4)I,Y=[1,21, X=[l,2,3,4int(5)],Y=[1,2].... In LOG(F), however, we
would first define:

int(N)=>[Nlint(N+ 1)1
first2([UIV])=>g(U,V)
g(U,[AIBI)=>[U,A]

These would be compiled to:

VI-12 Programming in LOG(F)

reduce([],[]).
reduce([UIV],[UIV]).
reduce(int(N),Z):-N1 is N+ 1,reduce([Nlint(N1)],Z).
reduce(first2(X),Z):-reduce(X,[UIV]), reduce(g(U,V),Z).
reduce(g(C,X),Z):-reduce(X,[AIBI),reduce([C,A],Z).

Now the query reduce(first2(int(1)),Z), would succeed with exactly one answer
substitution, Z=[1,21. This is as desired.

VI.9 COMPARING LOG(F) PERFORMANCE WITH THAT OF PROLOG

Programs of similar length, and intellectual complexity are written in both F* and in

Prolog. The former were compiled into Prolog, and optimized, before being compared
with the latter. The performance figures in Quintus Prolog on a SUN 3/50 are listed in

the table below.

For problems in which data structures are always completely evaluated, lazy evaluation
cannot reduce lengths of computation. Such problems include list reversal, or sorting.
For these, LOG(F) is, on an average, five times slower than Prolog. However, the
slowdown for a given problem appears to stay the same, regardless of the size of the
input.

For problems in which data structures need only be partially evaluated, e.g. the N-queens
problem, or tiling an infinite plane, lazy evaluation can reduce lengths of computation.
For these, LOG(F) can be faster than Prolog by factors which are unbounded, i.e. grow
with input size, and by factors which are infinite.

Time in milliseconds
lProloa LOG(F) Prolo /LOG(F)

Reverse: 3200 elements 83 883 0.09
Reverse: 6400 elements 150 1755 0.08
Quicksort: 60 elements 83 539 0.15
Quicksort: 120 elements 250 1261 0.19
Sieve: First 50 primes 422 1261 0.33
Sieve: First 100 primes 1816 4511 0.40
All permutations of [1,2,3,4.51 427 516 0.82
All permutations of [1,2,34,5.61 3000 3172 0.94
8-Queens: All solutions 62783 17511 3.58
9-Queens: All solutions 635144 86539 7.33
I 5-Queens: First solution >30 minutes 30300 >60
Infinite plane: First vector 1c -0 1c

VI-13 Programming in LOG(F)

Figure surfa

Figure 1. Some Graphical Primitives

VI-14 Programming in LOG(F)

Figur 2.uqureacemi

VH. SUMMARY AND CONCLUSIONS

A new approach for combining logic programming, rewriting, and lazy evaluation is
described. It rests upon subsuming within logic programming, instead of upon extending
it with, rewriting, and lazy evaluation.

F* is a non-terminating, non-deterministic rewrite rule system. The reduction strategy for
it, select, is reduction-complete. DF* is a subset of F*, and is also non-terminating. DF*
satisfies confluence, directedness, and minimality. Reduction-completeness, and
minimality enable select to exhibit, respectively, weak and strong forms of laziness.

F* can be compiled into Horn clauses in such a way that when SLD-resolution interprets
them, it directly simulates the behavior of select. In particular, it is made to exhibit
laziness. LOG(F) is defined to be a logic programming system augmented with an F*
compiler, and the equality axiom X=X. Since clauses obtained by compiling F*
programs can be called from other logic programs, LOG(F) is proposed as a combination
of logic programming, rewriting, and lazy evaluation.

LOG(F) offers, perhaps for the first time, an efficient implementation of lazy evaluation
within a widely used language, namely, Prolog. For problems in which lazy evaluation
cannot reduce lengths of computation, LOG(F) is somewhat slower than Prolog. For
problems in which lazy evaluation does reduce lengths of computation, LOG(F) can be
faster than Prolog by factors which are unbounded, i.e. grow with input size, and factors
which are infinite.

LOG(F) can also be used to implement useful cases of the rule of substitution of equals
for equals. Confluence of DF* yields a new proof of the confluence of combinatory logic.
Finally, DF* seems to be a good candidate for implementation on parallel machines. It
seems to offer a reasonable compromise between sequential execution and unbounded
parallelism. Due to directedness of DF*, arguments of f in f(tl,..,tm) can be simplified in
parallel, however, they would be simplified lazily.

VUL ACKNOWLEDGEMENTS

I am very grateful to my advisor, Professor D.S. Parker, for his guidance,
encouragement, and criticism throughout the development of the thesis on which this
paper is based. I also thank Professors Y.N. Moschovakis, David Jefferson, and Milos
Ercegovac, and Dr. Hassan Ait-Kaci for their many valuable suggestions.

IX. REFERENCES

Abramson, H. [1986]. A prolog definition of HASL, a purely functional language with
unification- based conditional binding expressions. In Logic programming:.functions,
relations and equations (eds.) D. DeGroot, G. Lindstrom, Prentice Hall, N.J.

Ait-Kaci, H., Nasr, R. [1986]. Residuation: A paradigm for integrating logic and
functional programming. MCC Technical Report AI-359-86, Austin, TX.

Ait-Kaci, H., Lincoln, P., Nasr, R. [1987]. Le Fun: Logic, Equations and Functions.
Proceedings of symposium on logic programming, San Francisco.

Apt, K.R., van Emden, M.H. [1982]. Contributions to the theory of logic programming.
Journal of the Association for Computing Machinery vol. 29, no. 3, July 1982.

Barendregt, H.P. [1977]. The type free lambda-calculus, in: Handbook of Mathematical
Logic, ed. John Barwise, North Holland Publishing Company.

Barbuti, R., Bellia, M., Levi, G. [1986]. LEAF: A language which integrates logic,
equations, and functions. In Logic programming:functions, relations and equations
(eds.) D. DeGroot, G. Lindstrom, Prentice Hall, N.J.

Barrow, H. [1983]. Proving the Correctness of Digital Hardware Designs. Proceedings
of the National Conference on Artificial Intelligence, Washington, D.C.

Bellia, M., Levi, G. [1986]. The relation between logic and functional languages: A
survey. Journal of Logic Programming, October.

Berry, G., Levy, J.-J. [1979]. Minimal and optimal computations of recursive programs.
Journal of the Association for Computing Machinery, vol. 26, no. 1, pp. 148-175.

Bundy, A., Welham, W. [1981]. Using meta-level inference for selective application of
multiple rewrite rule sets in algebraic manipulation. ArtificialIntelligence, vol 16, no. 2,
May.

Burstall, R.M., MacQueen, D.B., Sannella, D.T. [1980]. HOPE: An experimental
applicative language. Proceedings of 1980 Lisp Conference. Stanford, California.

Burstall, R., Darlington, J. [19771. A transformation system for developing recursive
programs. Journal of the Association for Computing Machinery, vol. 24, No. 1.

IX-2 References

Church, A. [1941]. The calculi of lambda-conversion. Annals of mathematical studies,
number 6. Princeton University Press, Princeton.

Clark, K.L., McCabe F. [1979]. Programmer's guide to IC-Prolog. CCD Report 7917,
London: Imperial College, University of London.

Clark, K.L. [1980]. Predicate Logic as a computational formalism. Research monograph,
Imperial college, University of London.

Clark, K.L., McCabe, F. [1982]. PROLOG: A Language for implementing expert
systems. Machine Intelligence 10, (eds.) J. Hayes and D.J. Michie.

Clark, K.L., Gregory, S. [1986]. PARLOG: Parallel programming in logic. ACM
transactions on programming languages and systems, 8,1.

Curry, H.B., Feys, R. [1958]. Combinatory Logic, vol 1, North Holland, Amsterdam.

Darlington, J., Field, A.J., Pull, H. [1986]. The unification of functional and logic
languages. Logic programming:functions, relations and equations (eds.) D. DeGroot, G.
Lindstrom, Prentice Hall, New Jersey.

Davis, M., Putnam, H. [1960]. A computing procedure for quantification theory. Journal
of the Association for Computing Machinery, 7, pp. 201-215.

DeGroot, D., Lindstrom, G. (editors) [1986]. Logic programming. Functions, relations

and equations. Prentice Hall, N.J.

Dershowitz, N., Josephson, N.A. [1984]. Logic Programming by completion.
Proceedings of second international logic programming conference, Uppsala University,
Sweden.

Digricoli, V.J., Harrison, M.C. [1986]. Equality-based binary resolution. Journal of the
Association for Computing Machinery, vol. 33, no. 2, April.

Dijkstra, E. [1976]. A discipline of programming. Prentice-Hall, Englewoods Cliffs, N.J.

Dincbas, M., van Hentenryck, P. [1987]. Extended unification algorithms for the
integration of functional and logic languages. Journal of logic programming, vol. 4, No.

3.

Fay, M. [1979]. First order unification in an equational theory. Proceedings of the 4th

IX-3 References

conference on automated deduction.

Frege, G. [1879]. Begriffsschrift. A formula language, modelled upon that of arithmetic,
for pure thought. In From Frege to Goedel: A source book in mathematical logic, 1879-
1931. Harvard University Press, Cambridge, MA.

Fribourg, L. [1984]. Oriented equational clauses as a programming language. Journal of
Logic Programming vol 1, pp. 165-177.

Friedman, D.P., Wise, D.S. [1976]. CONS should not evaluate its arguments, in
Automata, Languages and Programming, eds. S. Michaelson, R. Milner, Edinburgh
University Press, Edinburgh.

Gallagher J. [1982]. Simulating Coroutining for the 8 Queens Problem. Logic
Programming Newsletter 3, Summer 1982.

Gallaire, H., Lasserre, C. [1982]. Metalevel Control for Logic Programs, Logic
Programming eds. K. Clark, S.-A. Tarnlund, Academic Press, New York.

Gallaire, H., Minker, J. (editors) [1978]. Logic and Databases, Plenum Press, New York.

Gallier, J.H., Raatz, S. [1986]. SLD-resolution methods for Horn clauses with equality
based on E-unification. Proceedings of 1986 symposium on logic programming, Salt Lake
City, Utah.

Goguen, J.A., Meseguer, J. [1986]. Equality, types and generic modules for logic
programming. Logic programming:functions, relations and equations (eds.) D. DeGroot,
G. Lindstrom, Prentice Hall, N.J.

Green, C.C. [1969]. Theorem proving by resolution as a basis for question-answering
systems. Machine Intelligence, 4, Edinburgh University Press, pp 183-205.

Greene, K.J. [1985]. A fully lazy higher order purely functional programming language
with reduction semantics. CASE Center technical report no. 8503, Syracuse University,
N.Y.

Hansson, A., Haridi, S., Tarnlund, S.-A. [1982]. Properties of a logic programming
language, in: Logic Programming eds. K. Clark, S.-A. Tarnlund, Academic Press, New
York.

Henderson, P. [1980]. Functional Programming: Application and Implementation.

IX-4 References

Prentice Hall International, N.J.

Henderson, P. [1982]. Purely functional operating systems. In Functional programming
and its applications. An advanced course. (eds.) J. Darlington, P. Henderson, D.A.
Turner.

Henderson, P. [1982]. Functional Geometry. Proceedings of the ACM Symposium on Lisp
and Functional Programming. Pittsburgh, PA.

Hill, R. [1974]. LUSH Resolution and its completeness. DCL Memo 78, Department of
Artificial Intelligence, University of Edinburgh.

Hoffman, C.M., O'Donnell, M.J. [1982]. Programming with equations. ACM
Transactions on programming languages and systems. January.

Hoelldobler, S. [1987]. Equational logic programming. Proceedings of Fourth
Symposium on logic programming, San Francisco, CA.

Hopcroft, J., Ullman, J. [1979]. Introduction to automata theory, languages and
computation. Addison Wesley, Menlo Park, CA.

Huet, G. [1980]. Confluent reductions: abstract properties and applications to term
rewriting systems. Journal of the Association for Computing Machinery, October.

Huet, G., Levy, J.-J. [1979]. Call by need computations in non-ambiguous linear term
rewriting systems. IRIA technical report 359.

Huet, G. [1975]. A unification algorithm for typed X-calculus. Theoretical computer
science 1 (1975) 27-57.

Hullot, J.-M. [1980]. Canonical forms and unification. Proceedings of 5th conference on
automated deduction, Lecture Notes in Computer Science, 87, Springer Verlag.

Jaffar, J., Lassez, J.-L., Maher, M.J. [1984]. A theory of complete logic programs with
equality. Journal of logic programming, vol. 1, no. 3.

Kahn, K. [1986]. Uniform -- A language based upon unification which unifies (much of)
Lisp, Prolog, and Act 1. In Logic programming: functions, relations and equations (eds.)
D. DeGroot, G. Lindstrom, Prentice Hall, N.J.

Kahn, G., MacQueen, D. [1977]. Corautines and Networks of Parallel Processes.

IX-5 References

Information Processing-77, North-Holland, Amsterdam.

Knuth, D.E., Bendix, P.B. [1970]. Simple word problems in universal algebras.
Computational problems in abstract algebra, ed. J. Leech, Pergamon.

Kohavi, Z. [1978]. Switching and finite automata theory. McGraw Hill, New York.

Komorowski, H.J. [1982]. QLOG - The programming environment for Prolog in Lisp.
Logic Programming eds. K. Clark, S.-A. Tamlund, Academic Press, New York.

Kornfeld, W. [1983]. Equality for Prolog. Proceedings of International Joint Conference
on Artificial Intelligence. Karlsruhe, West Germany.

Kowalski, R. [1979]. Logic for Problem Solving, Elsevier North Holland, New York.

Lloyd, J. [1984]. Foundations of logic programming. Springer Verlag, New York.

Malachi, Y., Manna, Z. [1986]. Tablog: A new approach to logic programming. In
Logic programming:functions, relations and equations (eds.) D. DeGroot, G.
Lindstrom, Prentice Hall, N.J.

McCarthy, J. [1960]. Recursive functions of symbolic expressions and their computation
by machine. Communications of the Association for Computing Machinery, 3, pp. 184-
195.

Miller, D.A., Nadathur, G. [1986]. Higher-order logic programming. Proceedings of

third international conference on logic programming. Lecture notes in computer science
225, (ed.) E. Shapiro, Springer Verlag, New York.

Narain, S. [19851. A technique for doing lazy evaluation in logic. Proceedings of IEEE
Logic Programming Symposium, Boston, MA.

Narain, S. [1986]. MYCIN: The expert system and its implementation in LOGLISP. In
Logic programming and its applications, eds. D.H.D. Warren, M. van Caneghem, Ablex
publishing company, N.J.

Narain, S. [1986]. A Technique for Doing Lazy Evaluation in Logic. Journal of Logic
Programming, vol. 3, no. 3, October.

Narain, S. [19881. LOG(F): An optimal combination of logic programming, rewriting
and lazy evaluation. Ph.D. Thesis, Department of Computer Science, University of

IX-6 References

California, Los Angeles.

O'Donnell, M.J. [1985]. Equational logic as a programming language. MIT Press,
Cambridge, MA.

Pereira, F.C.N., Warren, D.H.D. [1980]. Definite clause grammars for natural language
analysis. A survey of the formalism and a comparison with augmented transition

networks. Artificial Intelligence Journal, 13, pp. 231-278.

Pingali, K., Arvind. [1985]. Efficient demand-driven evaluation. Part 1. ACM
transactions on programming languages and systems, April 1982.

Rabin, M.O. Theoretical impediments to artificial intelligence.

Reddy, U.S. [1985]. Narrowing as the operational semantics of functional languages.
Proceedings of the 1985 symposium on logic programming, Boston.

Robinson, G., Wos, L. [1969]. Paramodulation and theorem proving in first order theories
with equality. Machine Intelligence 4, (eds.) B. Meltzer, D. Michie, M. Swann.

Robinson, J.A. [1965]. A machine-oriented logic based on the resolution principle.

Journal of the Association for Computing Machinery, 12, pp 23-41.

Robinson, J.A. [1979]. Logic: Form and Function. The Mechanization of Deductive
Reasoning. Elsevier North Holland, New York.

Robinson, J.A., Sibert, E.E. [1982]. LOGLISP: Motivation, Design and Implementation.
Logic Programming eds. K. Clark, S.-A. Tarnlund, Academic Press, New York.

Robinson, J.A. [1984]. Editor's introduction. Journal of logic programming, vol. 1, no. 1,
June.

Robinson, J.A. [1987]. Beyond LOGLISP: Combining functional and relational
programming in a reduction setting. Machine Intelligence 11.

Robinson, J.A., Greene, K.J. [1987]. New Generation Knolwedge Processing, vol. III.

RADC-TR-87-165. Rome Air Development Center, Griffis Air Force Base, NY 13441.

Rosser, J.B. [1982]. Highlights of the history of the lambda-calculus. Proceedings of the
ACM Symposium on Lisp and Functional Programming. Pittsburgh, PA.

IX-7 References

Sato, M., Sakurai, T. [1986]. QUTE: A functional language based on unification. In
Logic programming: functions, relations and equations (eds.) D. DeGroot, G.
Lindstrom, Prentice Hall, N.J.

Shapiro, E. [1983]. A subset of Concurrent Prolog and its interpreter. ICOT technical
report TR-003, February 1983.

Shapiro, E., Takeuchi, A. [1983]. Object-oriented Programming in Concurrent Prolog.
New Generation Computing 1 (1983), OHMSA LTD and Springer Verlag, Japan.

Subrahmanyam, P.A. and You J.-H. [1984]. Conceptual Basis and Evaluation Strategies
for Integrating Functional and Logic Programming. Proceedings oflEEE Logic
Programming Symposium, Atlantic City, N.J.

Tamaki, H. [1984]. Semantics of a logic programming language with a reducibility
predicate. Proceedings of IEEE Logic Programming Symposium, Atlantic City, N.J.

Turner, D. [1979]. A New Implementation Technique for Applicative Languages,
Software Practice and Experience, 9, pp. 31-49.

Ueda, K. [1986]. Guarded Horn Clauses. Ph.D. Thesis. University of Tokyo. Tokyo,
Japan.

van Emden, M.H., Yukawa, K. [1987]. Logic programming with equations. Journal of
Logic Programming, vol. 4, no. 4.

Vuillemin, J. [1974]. Correct and optimal implementations of recursion in a simple
programming language. Journal of Computer and System Sciences, 9, pp. 332-354.

Wadsworth, C.P. [1976]. The relation between computational and denotational properties
for Scott's Do,-models of the lambda-calculus. SIAM Journal of Computing, vol. 5, no.
3, September.

Warren, D.H.D., van Caneghem, M. (editors) [1986]. Logic Programming and its
Applications, Ablex Publishing, N.J.

Warren, D.H.D., Pereira, L.M., Pereira, F.C.N. [1977]. Prolog - the language and its
implementation comparted with Lisp. Proceedings of the Symposium on Artificial
Intelligence and Programming Languages, SIGPLAN Notices 12, No. 8, and SIGART
Newsletter 64, pp 109-115.

IX-8 Referencs

Yamamoto, A. [1987]. A theoretical combination of SLD-resolution and narrowing.
Proceedings offourth international conference on logic programming, Melbourne,
Australia.

